Abstract:
A method for fabricating an array substrate having a color filter on a thin film transistor structure for a liquid crystal display device is disclosed in the present invention. The method for fabricating the array substrate includes forming a gate line and a data line crossing each other and defining a pixel region, forming a thin film transistor at each intersection of the gate and data lines, wherein the thin film transistor includes a gate electrode, an active layer, a source electrode, and a drain electrode, forming a first insulating layer to cover the thin film transistor and the data line, forming a black matrix on the first insulating layer, except for a portion of the drain electrode, forming a second insulating layer on the first insulating layer to cover the black matrix, pattering the first and second insulating layers to expose a portion of the drain electrode, forming a first transparent electrode layer over a surface of the substrate to cover the patterned second insulating layer and the exposed portion of the drain electrode, patterning the first transparent electrode layer to form a pixel electrode in the pixel region, wherein the pixel electrode contacts the exposed portion of the drain electrode, forming a color filter on the pixel electrode, forming a second transparent electrode over a surface of the substrate to cover the color filter and the pixel electrode, wherein the second transparent electrode is in an amorphous state, irradiating a light to a portion of the second transparent electrode layer corresponding to the pixel region so as to crystallize the irradiated portion of the second transparent electrode, and forming a second pixel electrode in the pixel region by removing the non-crystallized portion of the second transparent electrode layer, wherein the second pixel electrode contacts the first pixel electrode over the black matrix.
Abstract:
A method of forming an array substrate for use in a liquid crystal display device includes forming a gate line, a gate pad, and a gate electrode, forming a first gate insulating layer to cover the gate line, the gate pad, and the gate electrode, forming an active layer and an ohmic contact layer on the first gate insulating layer, forming a data line, a data pad, a source electrode, and a drain electrode, forming a second insulating layer to cover the thin film transistor, forming a black matrix on the second insulating layer to cover the thin film transistor, the gate line, and the data line except a first portion of the drain electrode, forming a third insulating layer to cover the black matrix, patterning the first, second, and third insulating layers, forming a first transparent electrode layer to cover the patterned third insulating layer, coating an adhesive color film on the first transparent electrode layer, irradiating a laser to portions of the adhesive color film corresponding to the pixel region, removing the adhesive color film to form a color film, repeating coating the adhesive color film, irradiating the laser and removing the adhesive color film to form the color film within all of the pixel regions, forming a second transparent electrode to cover the color filter and the first transparent electrode layer, and patterning the first and second transparent electrode layers to form first and second pixel electrodes, a double-layered gate pad terminal, and a double-layered data pad terminal.
Abstract:
A liquid crystal display device having an array substrate of a color filter on a thin film transistor structure and a manufacturing method thereof are disclosed in the present invention. The liquid crystal display device having an array substrate includes an array substrate, a plurality of gate lines and data lines over the substrate, the gate and data lines defining a pixel region, a thin film transistor formed at each crossing region of the gate lines and the data lines, the thin film transistor including a gate electrode, an active layer, a source electrode, and a drain electrode, a black matrix over the thin film transistor, exposing a portion of the drain electrode, a first pixel electrode at the pixel region, contacting the exposed portion of the drain electrode, a color filter on the first pixel electrode at the pixel region, and a second pixel electrode on the color filter, directly contacting the first pixel electrode.
Abstract:
An array substrate for a liquid crystal display device includes a substrate, a gate line on the substrate, the gate line connected to a gate pad, a data line on the substrate, the data line connected to a data pad and crossing the gate line for defining a pixel region, a thin film transistor connected to the gate line and the data line, the thin film having a gate electrode and source and drain electrodes, a passivation layer over the gate line, the data line, and the thin film transistor, the passivation layer having a first contact hole exposing the drain electrode, a second contact hole exposing the gate pad, and a third contact hole exposing the data pad, a black matrix on the passivation layer over the thin film transistor, a first conductive pattern covering the first contact hole, a pixel electrode on the passivation layer at the pixel region, the pixel electrode contacting the first conductive pattern, an auxiliary gate pad connected to the gate pad through the second contact hole, and an auxiliary data pad connected to the data pad through the third contact hole.
Abstract:
An array substrate device includes a gate line formed on a substrate extending along a first direction having a gate electrode, a data line formed on the substrate extending along a second direction having a data pad disposed apart from a first end of the data line, the data and gate lines defining a pixel region, a gate pad formed on the substrate disposed apart from a first end of the gate line, a thin film transistor formed at a crossing region of the gate and data lines and including the gate electrode, a semiconductor layer, a source electrode, and a drain electrode, a black matrix overlapping the thin film transistor, the gate line, and the data line except for a first portion of the drain electrode, a first pixel electrode at the pixel region contacting the first portion of the drain electrode and the substrate, a color filter on the first pixel electrode at the pixel region, and a second pixel electrode on the color filter contacting the first pixel electrode.