Abstract:
A main shaft fixture for fixing a main shaft on a wind turbine during installation and repair work on heavy parts of the wind turbine nacelle, in the case where the fixture is formed of several sections for mounting on stable structural parts in the nacelle, including the nacelle's bottom frame. The main shaft fixture has adjustable pressure mandrels with tap shoes, which cause the fixture to be usable regardless of the turbine main shaft geometry, such that it can be mounted without fixing the rotor. The main shaft fixture also has facilities for mounting of a lightweight crane and a self-hoisting crane with a ground-based winch, respectively, as well as a rotor lock which, in combination with actuators of the main shaft fixture, enables the main shaft and the main shaft bearing to be sufficiently displaced vertically from its bearing in the nacelle to service or replace the bearing.
Abstract:
A main shaft fixture for fixing a main shaft on a wind turbine during installation and repair work on heavy parts of the wind turbine nacelle, in the case where the fixture is formed of several sections for mounting on stable structural parts in the nacelle, including the nacelle's bottom frame. The main shaft fixture has adjustable pressure mandrels with tap shoes, which cause the fixture to be usable regardless of the turbine main shaft geometry, such that it can be mounted without fixing the rotor. The main shaft fixture also has facilities for mounting of a lightweight crane and a self-hoisting crane with a ground-based winch, respectively, as well as a rotor lock which, in combination with actuators of the main shaft fixture, enables the main shaft and the main shaft bearing to be sufficiently displaced vertically from its bearing in the nacelle to service or replace the bearing.
Abstract:
The present invention relates to a method for lifting a wind turbine component, such as a rotor blade, gearbox or a rotor, with a lifting yoke comprising a first structural body comprising a crane hook attachment point, a first connection point and a second connection point, a second structural body comprising a third connection point and a fourth connection point, the second structural body further comprising a first axis defined as being parallel to the longitudinal direction of the second structural body, a second axis defined as being perpendicular to the first axis and extending substantially in the transverse direction of the second structural body, said first and second axis defining a lifting plane, and a third axis defined as being perpendicular to the first and second axes.
Abstract:
A main shaft fixture for fixing a main shaft on a wind turbine during installation and repair work on heavy parts of the wind turbine nacelle, in the case where the fixture is formed of several sections for mounting on stable structural parts in the nacelle, including the nacelle's bottom frame. The main shaft fixture has adjustable pressure mandrels with tap shoes, which cause the fixture to be usable regardless of the turbine main shaft geometry, such that it can be mounted without fixing the rotor. The main shaft fixture also has facilities for mounting of a lightweight crane and a self-hoisting crane with a ground-based winch, respectively, as well as a rotor lock which, in combination with actuators of the main shaft fixture, enables the main shaft and the main shaft bearing to be sufficiently displaced vertically from its bearing in the nacelle to service or replace the bearing.
Abstract:
A method for automatic control of the position of a burden suspended in a main wire of a crane, where the burden is connected with at least two tag lines which respectively is connected to a number of winches. The control of the position and rotation of the burden is performed by actuators on the respective winches which perform ease off/tightening of the respective tag lines from signals of at least tone measuring unit with signal transmitter located on the burden measuring angles. A central monitoring- and control unit performs control of rotation and position of the burden by multiple transmitting of compensatory control signals to relevant actuators for tag lines and the crane main wire. Guiding and control of the position of the burden is possible even when subject external random impacts, as wind and sea. Further the method is useable in positioning the burden in correct mounting position.