Abstract:
In one embodiment, a magnet includes a three-dimensional structure with nanoscale features, where the three-dimensional structure has a near net shape corresponding to a predefined shape.
Abstract:
Methods of forming joinery between components formed from dissimilar materials, and assemblies utilizing the joinery. The components include interface surfaces having complementary peaks and valleys that interlock. A compliant interface is formed between the interface surfaces and the interface can be configured to provide functionality.
Abstract:
In one embodiment, a method includes dispersing a plurality of particles in solution to form a dispersion and adding a stabilizing agent to the dispersion in an amount sufficient to cause the dispersion to exhibit one or more predetermined rheological properties. The particles in the dispersion are configured to complete a self-propagating and/or self-sustaining reaction upon initiation thereof. In another embodiment, a method includes depositing a material on a substrate. The material includes: a plurality of particles configured to complete a self-propagating and/or self-sustaining reaction upon initiation thereof, a solvent system, and one or more stabilizing agents.
Abstract:
In one embodiment, a magnet includes a plurality of layers, each layer having a microstructure of sintered particles. The particles in at least one of the layers are characterized as having preferentially aligned magnetic orientations in a first direction.
Abstract:
In one embodiment, a material includes a plurality of particles, a solvent system and one or more stabilizing agents; the particles are configured to complete a self-propagating and/or self-sustaining reaction upon initiation thereof. In another embodiment, a method includes dispersing a plurality of particles in solution to form a dispersion and adding a stabilizing agent to the dispersion in an amount sufficient to cause the dispersion to exhibit one or more predetermined rheological properties; again, the particles in the dispersion are configured to complete a self-propagating and/or self-sustaining reaction upon initiation thereof. In still another embodiment, a method includes depositing a material on a substrate; the material includes a plurality of particles configured to complete a self-propagating and/or self-sustaining reaction upon initiation thereof, a solvent system and one or more stabilizing agents.
Abstract:
Apparatus, systems, and methods that ultrasonically agitate a semisolid metal slurry to prevent dendrite formation that can lead to clogging of a nozzle during direct metal writing.
Abstract:
A metal boride aerogel includes a three-dimensional aerogel structure comprising metal boride particles having an average diameter of less than one micron. A method is disclosed for forming a metal boride aerogel including dispersing boron nanoparticles in a solution of a metal salt, forming a boron-loaded metal oxide precursor gel using the dispersed boron nanoparticles in the solution of the metal salt, drying the boron-loaded metal oxide precursor gel to form a boron-loaded metal oxide precursor aerogel, and heating the boron-loaded metal oxide precursor aerogel to form a metal boride aerogel. The metal boride aerogel is essentially free of metal oxide.
Abstract:
In one embodiment, a method includes dispersing a plurality of particles in a solution to form a dispersion; and adding a stabilizing agent to the dispersion in an amount sufficient to cause the dispersion to exhibit one or more predetermined rheological properties, wherein the particles are characterized by a core-shell configuration, wherein the core-shell configuration includes a core formed from a first material and a shell formed from a second material, wherein the first material and the second material form a combustible composition and/or a reactive binary composition that is configured to complete a self-propagating reaction and/or a self-sustaining reaction upon initiation thereof. Corresponding materials, and methods of using such materials, are also disclosed.
Abstract:
An additive manufacturing system for producing metal parts from pure metal or eutectic alloys. The system includes an additive manufacturing print head, a print head heater system, an agitation system, a nozzle in the additive manufacturing print head, a reservoir for melting the metal, and a long heated tube for conditioning the alloy for extrusion in the semi-solid state through a nozzle.
Abstract:
A method includes providing a plurality of particles of an energetic material suspended in a dispersion liquid to an EPD chamber or configuration; applying a voltage difference across a first pair of electrodes to generate a first electric field in the EPD chamber; and depositing at least some of the particles of the energetic material on at least one surface of a substrate, the substrate being one of the electrodes or being coupled to one of the electrodes.