Abstract:
A method for estimating error probability of LDPC codes includes ordering LDPC codes according to features in each code with known error characteristics. The method includes identifying features in each LDPC code having known error characteristics; adding each code to one or more categories based on the existence of such features; and ranking the LDPC codes according to the level of error risk.
Abstract:
A method for ordering trapping sets to find one or more dominant trapping sets includes analyzing a trapping set and a random set of codewords to generate a distance value for each trapping set, and ordering the trapping sets by the distance value. Distance values may be determined for each trapping set by tracking a vote count wherein a correct decode at a certain noise level produces a “right” vote and an incorrect decode at a certain noise level produces a “left” vote. A certain threshold number of “left” votes terminates processing at that noise level.
Abstract:
A method for estimating error probability of LDPC codes includes ordering LDPC codes according to features in each code with known error characteristics. The method includes identifying features in each LDPC code having known error characteristics; adding each code to one or more categories based on the existence of such features; and ranking the LDPC codes according to the level of error risk.
Abstract:
A method for ordering trapping sets to find one or more dominant trapping sets includes analyzing a trapping set and a random set of codewords to generate a distance value for each trapping set, and ordering the trapping sets by the distance value. Distance values may be determined for each trapping set by tracking a vote count wherein a correct decode at a certain noise level produces a “right” vote and an incorrect decode at a certain noise level produces a “left” vote. A certain threshold number of “left” votes terminates processing at that noise level.