Abstract:
Aspects of the disclosure pertain to a system and method for providing component detector switching for a diversity loop detector. Switching between component detectors is performed via one of: a periodic state likelihood reset process, a slope-based switching process, or a cross-over connection process. The joint decision circuit switches among component detectors to promote improved performance with present of constant or transition phase offset.
Abstract:
A memory interleaving apparatus includes first and second interleavers. The first interleaver selectively interleaves information stored in a first memory in response to a sector select signal. The second interleaver selectively interleaves information stored in a second memory in response the sector select signal. The first interleaver is coupled with the second interleaver. A memory interleaving system includes an interleaver and a storage device. The interleaver is associated with a first sector size and a second sector size. The interleaver selectively interleaves information stored in a first memory and/or a second memory in response to a sector select signal. The storage device selectively provides the first masking seed and/or a second masking seed to the interleaver in response to the sector select signal. Corresponding methods are also disclosed.
Abstract:
The present invention includes generating a tie-breaking metric via a comparative tie-breaking metric training process, monitoring an output of a channel detector in order to identify a tie condition between a first log-likelihood ratio (LLR) value and a second LLR value of a symbol, and upon identifying a tie condition between the first LLR value and the second LLR value of the symbol, applying the generated tie-breaking metric to the symbol in order to assign a hard decision to the symbol.
Abstract:
A LE hard decision memory comprises a global mapping element to interleave L values from a first and second circulant and store the interleaved values in a first memory element. A low-density parity-check decoder then processes the circulants from the first memory element and stores output in a second memory element. The LE hard decision memory does not include any mux-demux elements.
Abstract:
Various embodiments of the present invention provide systems and methods for data processing that includes selectively reporting results out of order or in order.
Abstract:
A data processing system is disclosed including a decoder circuit, syndrome calculation circuit and hash calculation circuit. The decoder circuit is operable to apply a decoding algorithm to a decoder input based on a first portion of a composite matrix to yield a codeword. The syndrome calculation circuit is operable to calculate a syndrome based on the codeword and on the first portion of the composite matrix. The hash calculation circuit is operable to calculate a hash based on a second portion of the composite matrix. The decoder circuit is also operable to correct the codeword on the hash when the syndrome indicates that the codeword based on the first portion of the composite matrix is correct but a second test indicates that the codeword is miscorrected.
Abstract:
A method for ordering trapping sets to find one or more dominant trapping sets includes analyzing a trapping set and a random set of codewords to generate a distance value for each trapping set, and ordering the trapping sets by the distance value. Distance values may be determined for each trapping set by tracking a vote count wherein a correct decode at a certain noise level produces a “right” vote and an incorrect decode at a certain noise level produces a “left” vote. A certain threshold number of “left” votes terminates processing at that noise level.
Abstract:
The present inventions are related to systems and methods for data processing, and more particularly to systems and methods for scheduling in a data decoder.
Abstract:
A communication channel structure and a decoding method supported by such a communication channel structure are disclosed. Such a communication channel includes a digital filter configured for filtering an input signal and two quantizer configured for quantizing the filtered signal. A first quantizer is utilized to quantize the filtered signal to produce a first quantized sample having a first precision and a second quantizer is utilized to quantize the filtered signal to produce a second quantized sample having a second precision, wherein the second precision is different from the first precision. The communication channel also includes an iterative decoder configured for utilizing the first quantized sample for a first global iteration of a decoding process and utilizing the second quantized sample for at least one subsequent global iteration of the decoding process.
Abstract:
A data processing system includes a decoder circuit, syndrome calculation circuit and hash calculation circuit. The decoder circuit is operable to apply a decoding algorithm to a decoder input based on a first portion of a composite matrix to yield a codeword. The syndrome calculation circuit is operable to calculate a syndrome based on the codeword and on the first portion of the composite matrix. The hash calculation circuit is operable to calculate a hash based on a second portion of the composite matrix. The decoder circuit is also operable to correct the codeword on the hash when the syndrome indicates that the codeword based on the first portion of the composite matrix is correct but a second test indicates that the codeword is miscorrected.