Abstract:
A method and system for registration of three-dimensional (3D) image frames is disclosed. The method includes receiving two point clouds representing two 3D image frames obtained at two time instances; locating the origins for the two point clouds; constructing two 2D grids for representing the two point clouds, wherein each 2D grid is constructed based on spherical representation of its corresponding point cloud and origin; identifying two sets of feature points based on the two 2D grids constructed; establishing a correspondence between the first set of feature points and the second set of feature points based on a neighborhood radius threshold; and determining an orthogonal transformation between the first 3D image frame and the second 3D image frame based on the correspondence between the first set of feature points and the second set of feature points.
Abstract:
A method for estimating error rates in low-density parity check codes includes calibrating an encoder according to specific channel parameters and according to dominant error events in the low-density parity-check code. Dominant codewords are classified based on characteristics of each codeword that are likely to produce similar error rates at similar noise levels; codeword classes that produce the highest error rate are then tested. Error boundary distance is estimated using multiple binary searches on segments. Segments are defined based on codeword, trapping set and biasing noise components of the channel. To improve calculation speed the most significant subclasses of codewords, trapping sets and noise signals are used.
Abstract:
A method and system for key frame based region of interest (ROI) tracking is disclosed. The method includes storing a key ROI set in a key ROI buffer, the key ROI set including at least one key ROI; designating one of the key ROI in the key ROI set as an active key ROI; receiving a point cloud representing a particular ROI to be processed for tracking; establishing a correspondence between that particular ROI and the active key ROI; determining whether to switch the active key designation to another key ROI in the key ROI set and switching the active key designation accordingly; and determining whether to modify the key ROI set and modifying the key ROI set accordingly.
Abstract:
A method for estimating error rates in low-density parity check codes includes calibrating an encoder according to specific channel parameters and according to dominant error events in the low-density parity-check code. Dominant codewords are classified based on characteristics of each codeword that are likely to produce similar error rates at similar noise levels; codeword classes that produce the highest error rate are then tested. Error boundary distance is estimated using multiple binary searches on segments. Segments are defined based on codeword, trapping set and biasing noise components of the channel. To improve calculation speed the most significant subclasses of codewords, trapping sets and noise signals are used.
Abstract:
A method and system for key frame based region of interest (ROI) tracking is disclosed. The method includes storing a key ROI set in a key ROI buffer, the key ROI set including at least one key ROI; designating one of the key ROI in the key ROI set as an active key ROI; receiving a point cloud representing a particular ROI to be processed for tracking; establishing a correspondence between that particular ROI and the active key ROI; determining whether to switch the active key designation to another key ROI in the key ROI set and switching the active key designation accordingly; and determining whether to modify the key ROI set and modifying the key ROI set accordingly.
Abstract:
The disclosure is directed to a system and method of image processing. According to various embodiments of the disclosure, a storage module in communication with a plurality of memory banks stores a plurality of pixels of an image in the memory banks and interleaves the memory banks to enable a plurality of image scanners to access the plurality of pixels. A scanning module scans a selection of pixels in at least four directions relative to a first pixel of the plurality of pixels utilizing the plurality of image scanners. A singular points detection module in communication with the scanning module acquires a depth of each pixel of the selection of scanned pixels and determines a singularity value of the first pixel by comparing the depth of the first pixel with the depth of each pixel of the selection of pixels.
Abstract:
A method for ordering trapping sets to find one or more dominant trapping sets includes analyzing a trapping set and a random set of codewords to generate a distance value for each trapping set, and ordering the trapping sets by the distance value. Distance values may be determined for each trapping set by tracking a vote count wherein a correct decode at a certain noise level produces a “right” vote and an incorrect decode at a certain noise level produces a “left” vote. A certain threshold number of “left” votes terminates processing at that noise level.
Abstract:
A method for ordering trapping sets to find one or more dominant trapping sets includes analyzing a trapping set and a random set of codewords to generate a distance value for each trapping set, and ordering the trapping sets by the distance value. Distance values may be determined for each trapping set by tracking a vote count wherein a correct decode at a certain noise level produces a “right” vote and an incorrect decode at a certain noise level produces a “left” vote. A certain threshold number of “left” votes terminates processing at that noise level.