摘要:
A method and data processing system for performing fence operations within a global shared memory (GSM) environment having a local task executing on a processor and providing GSM commands for processing by a host fabric interface (HFI) window that is allocated to the task. The HFI window has one or more registers for use during local fence operations. A first register tracks a first count of task-issued GSM commands, and a second register tracks a second count of GSM operations being processed by the HFI. The processing logic detects a locally-issued fence operation, and responds by performing a series of operations, including: automatically stopping the task from issuing additional GSM commands; monitoring for completion of all the task-issued GSM commands at the HFI; and triggering a resumption of issuance of GSM commands by the task when the completion of all previous task-issued GSM commands is registered by the HFI.
摘要:
A data processing system enables global shared memory (GSM) operations across multiple nodes with a distributed EA-to-RA mapping of physical memory. Each node has a host fabric interface (HFI), which includes HFI windows that are assigned to at most one locally-executing task of a parallel job. The tasks perform parallel job execution, but map only a portion of the effective addresses (EAs) of the global address space to the local, real memory of the task's respective node. The HFI window tags all outgoing GSM operations (of the local task) with the job ID, and embeds the target node and HFI window IDs of the node at which the EA is memory mapped. The HFI window also enables processing of received GSM operations with valid EAs that are homed to the local real memory of the receiving node, while preventing processing of other received operations without a valid EA-to-RA local mapping.
摘要:
A target task ensures complete delivery of a global shared memory (GSM) message from an originating task to the target task. The target task's HFI receives a first of multiple GSM packets generated from a single GSM message sent from the originating task. The HFI logic assigns a sequence number and corresponding tuple to track receipt of the complete GSM message. The sequence number is unique relative to other sequence numbers assigned to GSM messages that have not been completely received from the initiating task. The HFI updates a count value within the tuple, which comprises the sequence number and the count value for the first GSM packet and for each subsequent GSM packet received for the GSM message. The HFI determines when receipt of the GSM message is complete by comparing the count value with a count total retrieved from the packet header.
摘要:
A method and data processing system for tracking global shared memory (GSM) operations to and from a local node configured with a host fabric interface (HFI) coupled to a network fabric. During task/job initialization, the system OS assigns HFI window(s) to handle the GSM packet generation and GSM packet receipt and processing for each local task. HFI processing logic automatically tags each GSM packet generated by the HFI window with a global job identifier (ID) of the job to which the local task is affiliated. The job ID is embedded within each GSM packet placed on the network fabric. On receipt of a GSM packet from the network fabric, the HFI logic retrieves the embedded job ID and compares the embedded job ID with the ID within the HFI window(s). GSM packets are forwarded to an HFI window only when the embedded job ID matches the HFI window's job ID.
摘要:
A target task ensures complete delivery of a global shared memory (GSM) message from an originating task to the target task. The target task's HFI receives a first of multiple GSM packets generated from a single GSM message sent from the originating task. The HFI logic assigns a sequence number and corresponding tuple to track receipt of the complete GSM message. The sequence number is unique relative to other sequence numbers assigned to GSM messages that have not been completely received from the initiating task. The HFI updates a count value within the tuple, which comprises the sequence number and the count value for the first GSM packet and for each subsequent GSM packet received for the GSM message. The HFI determines when receipt of the GSM message is complete by comparing the count value with a count total retrieved from the packet header.
摘要:
A host fabric interface (HFI) enables debugging of global shared memory (GSM) operations received at a local node from a network fabric. The local node has a memory management unit (MMU), which provides an effective address to real address (EA-to-RA) translation table that is utilized by the HFI to evaluate when EAs of GSM operations/data from a received GSM packet is memory-mapped to RAs of the local memory. The HFI retrieves the EA associated with a GSM operation/data within a received GSM packet. The HFI forwards the EA to the MMU, which determines when the EA is mapped to RAs within the local memory for the local task. The HFI processing logic enables processing of the GSM packet only when the EA of the GSM operation/data within the GSM packet is an EA that has a local RA translation. Non-matching EAs result in an error condition that requires debugging.
摘要:
A data processing system enables global shared memory (GSM) operations across multiple nodes with a distributed EA-to-RA mapping of physical memory. Each node has a host fabric interface (HFI), which includes HFI windows that are assigned to at most one locally-executing task of a parallel job. The tasks perform parallel job execution, but map only a portion of the effective addresses (EAs) of the global address space to the local, real memory of the task's respective node. The HFI window tags all outgoing GSM operations (of the local task) with the job ID, and embeds the target node and HFI window IDs of the node at which the EA is memory mapped. The HFI window also enables processing of received GSM operations with valid EAs that are homed to the local real memory of the receiving node, while preventing processing of other received operations without a valid EA-to-RA local mapping.
摘要:
A data processing system enables global shared memory (GSM) operations across multiple nodes with a distributed EA-to-RA mapping of physical memory. Each node has a host fabric interface (HFI), which includes HFI windows that are assigned to at most one locally-executing task of a parallel job. The tasks perform parallel job execution, but map only a portion of the effective addresses (EAs) of the global address space to the local, real memory of the task's respective node. The HFI window tags all outgoing GSM operations (of the local task) with the job ID, and embeds the target node and HFI window IDs of the node at which the EA is memory mapped. The HFI window also enables processing of received GSM operations with valid EAs that are homed to the local real memory of the receiving node, while preventing processing of other received operations without a valid EA-to-RA local mapping.
摘要:
A method and data processing system for tracking global shared memory (GSM) operations to and from a local node configured with a host fabric interface (HFI) coupled to a network fabric. During task/job initialization, the system OS assigns HFI window(s) to handle the GSM packet generation and GSM packet receipt and processing for each local task. HFI processing logic automatically tags each GSM packet generated by the HFI window with a global job identifier (ID) of the job to which the local task is affiliated. The job ID is embedded within each GSM packet placed on the network fabric. On receipt of a GSM packet from the network fabric, the HFI logic retrieves the embedded job ID and compares the embedded job ID with the ID within the HFI window(s). GSM packets are forwarded to an HFI window only when the embedded job ID matches the HFI window's job ID.
摘要:
A method for issuing global shared memory (GSM) operations from an originating task on a first node coupled to a network fabric of a distributed network via a host fabric interface (HFI). The originating task generates a GSM command within an effective address (EA) space. The task then places the GSM command within a send FIFO. The send FIFO is a portion of real memory having real addresses (RA) that are memory mapped to EAs of a globally executing job. The originating task maintains a local EA-to-RA mapping of only a portion of the real address space of the globally executing job. The task enables the HFI to retrieve the GSM command from the send FIFO into an HFI window allocated to the originating task. The HFI window generates a corresponding GSM packet containing GSM operations and/or data, and the HFI window issues the GSM packet to the network fabric.