摘要:
An immunoassay device incorporating porous polymeric capture nanoparticles within either the sample collection vessel or pre-impregnated into a porous substratum within fluid flow path of the analytical device is presented. This incorporation of capture particles within the immunoassay device improves sensitivity while removing the requirement for pre-processing of samples prior to loading the immunoassay device. A preferred embodiment is coreshell bait containing capture nanoparticles which perform three functions in one step, in solution: a) molecular size sieving, b) target analyte sequestration and concentration, and c) protection from degradation. The polymeric matrix of the capture particles may be made of co-polymeric materials having a structural monomer and an affinity monomer, the affinity monomer having properties that attract the analyte to the capture particle. This device is useful for point of care diagnostic assays for biomedical applications and as field deployable assays for environmental, pathogen and chemical or biological threat identification.
摘要:
The present invention provides reliable methods to identify subsets of subjects with a cancer of epithelial origin characterized by a high level of phosphorylated c-erbB2 which does not correlate with the over-expression of total c-erbB2 as measured by IHC or FISH, for selection and inclusion for c-erbB2-direct treatment and therapy. Furthermore, the present invention provides a reliable method to determine whether a subject with a cancer of epithelial origin who has been determined to be c-erbB2 positive by IHC and by FISH should be excluded from c-erbB2-direct treatment because of a non-significant level of phosphorylated c-erbB2 in epithelial tumor tissue.
摘要:
The present invention provides reliable methods to identify subsets of subjects with a cancer of epithelial origin characterized by a high level of phosphorylated c-erbB2 which does not correlate with the over-expression of total c-erbB2 as measured by IHC or FISH, for selection and inclusion for c-erbB2-direct treatment and therapy. Furthermore, the present invention provides a reliable method to determine whether a subject with a cancer of epithelial origin who has been determined to be c-erbB2 positive by IHC and by FISH should be excluded from c-erbB2-direct treatment because of a non-significant level of phosphorylated c-erbB2 in epithelial tumor tissue.
摘要:
Methods of selecting a treatment for a patient with multiple myeloma are provided. Prior to commencing a treatment regime, bone marrow aspirates are isolated from a patient and incubated with one or more candidate therapeutics. The methods identify the therapy or combination of therapies most likely to yield the best results for a particular individual. In addition to improving clinical outcome, such theranostic evaluations dramatically reduce health care costs, by avoiding ineffective therapies. Screening assays for identifying treatments for multiple myeloma also are provided.
摘要:
This invention relates, e.g., to a method for predicting a subject's response to a chemotherapeutic agent and/or the subject's prognosis, comprising measuring the phosphorylation state of at least one member of the mTOR pathway, and/or of at least one member of an interconnected polypeptide pathway (e.g. a member of the Akt pathway or a member of the IRS pathway), compared to a baseline value, in a cancer tissue or cancer cell sample from the subject, wherein an elevated level of the phosphorylation state compared to the baseline value indicates that the subject is a non-responder to the chemotherapeutic agent and/or has a poor prognosis. Also described is a method for treating a cancer in a subject in need thereof, wherein the subject exhibits an elevated level of the phosphorylation state, comprising administering one or more inhibitors of the mTOR and/or an interconnected pathway.
摘要:
This invention relates, e.g., to a method for predicting a subject's response to a chemotherapeutic agent and/or the subject's prognosis, comprising measuring the phosphorylation state of at least one member of the mTOR pathway, and/or of at least one member of an interconnected polypeptide pathway (e.g. a member of the Akt pathway or a member of the IRS pathway), compared to a baseline value, in a cancer tissue or cancer cell sample from the subject, wherein an elevated level of the phosphorylation state compared to the baseline value indicates that the subject is a non-responder to the chemotherapeutic agent and/or has a poor prognosis. Also described is a method for treating a cancer in a subject in need thereof, wherein the subject exhibits an elevated level of the phosphorylation state, comprising administering one or more inhibitors of the mTOR and/or an interconnected pathway.
摘要:
An immunoassay device incorporating porous polymeric capture nanoparticles within either the sample collection vessel or pre-impregnated into a porous substratum within fluid flow path of the analytical device is presented. This incorporation of capture particles within the immunoassay device improves sensitivity while removing the requirement for pre-processing of samples prior to loading the immunoassay device. A preferred embodiment is coreshell bait containing capture nanoparticles which perform three functions in one step, in solution: a) molecular size sieving, b) target analyte sequestration and concentration, and c) protection from degradation. The polymeric matrix of the capture particles may be made of co-polymeric materials having a structural monomer and an affinity monomer, the affinity monomer having properties that attract the analyte to the capture particle. This device is useful for point of care diagnostic assays for biomedical applications and as field deployable assays for environmental, pathogen and chemical or biological threat identification.
摘要:
Capture particles for harvesting analytes from solution and methods for using them are described. The capture particles are made up of a polymeric matrix having pore size that allows for the analytes to enter the capture particles. The pore size of the capture particles are changeable upon application of a stimulus to the particles, allowing the pore size of the particles to be changed so that analytes of interest remain sequestered inside the particles. The polymeric matrix of the capture particles are made of co-polymeric materials having a structural monomer and an affinity monomer, the affinity monomer having properties that attract the analyte to the capture particle. The capture particles may be used to isolate and identify analytes present in a mixture. They may also be used to protect analytes which are typically subject to degradation upon harvesting and to concentrate low an analyte in low abundance in a fluid.
摘要:
This invention describes the identification of novel organic dye chemistries that can be used as affinity baits to capture proteins and other biomolecules useful in the fields of medical diagnostics, environmental science, toxicology, and infectious disease. Incorporation of unique affinity dye compounds within hydrogel capture particles improves analyte yield and preanalytical precision, and stabilizes the analyte against degradation, while increasing measurement sensitivity. The particles in this invention can be used for routine clinical testing as well as for discovery of low abundance disease biomarkers. Example hydrogel particles containing new high affinity bait chemistries were used to identify a new set of human serum biomarkers.
摘要:
Capture particles for harvesting analytes from solution and methods for using them are described. The capture particles are made up of a polymeric matrix having pore size that allows for the analytes to enter the capture particles. The pore size of the capture particles are changeable upon application of a stimulus to the particles, allowing the pore size of the particles to be changed so that analytes of interest remain sequestered inside the particles. The polymeric matrix of the capture particles are made of co-polymeric materials having a structural monomer and an affinity monomer, the affinity monomer having properties that attract the analyte to the capture particle. The capture particles may be used to isolate and identify analytes present in a mixture. They may also be used to protect analytes which are typically subject to degradation upon harvesting and to concentrate low an analyte in low abundance in a fluid.