摘要:
AS-oligonucleotides are delivered in microsphere form in order to induce dendritic cell tolerance, particularly in the non-obese-diabetic (NOD) mouse model. The microspheres incorporate antisense (AS) oligonucleotides. A process includes using an antisense approach to reverse an autoimmune diabetes condition in NOD mice in vivo. The oligonucleotides are targeted to bind to primary transcripts CD40, CD80, CD86 and their combinations.
摘要:
AS-oligonucleotides are delivered in microsphere form in order to induce dendritic cell tolerance, particularly in the non-obese-diabetic (NOD) mouse model. The microspheres incorporate antisense (AS) oligonucleotides. A process includes using an antisense approach to reverse an autoimmune diabetes condition in NOD mice in vivo. The oligonucleotides are targeted to bind to primary transcripts CD40, CD80, CD86 and their combinations.
摘要:
AS-oligonucleotides are delivered in microsphere form in order to induce dendritic cell tolerance, particularly in the non-obese-diabetic (NOD) mouse model. The microspheres incorporate antisense (AS) oligonucleotides. A process includes using an antisense approach to reverse an autoimmune diabetes condition in NOD mice in vivo. The oligonucleotides are targeted to bind to primary transcripts CD40, CD80, CD86 and their combinations.
摘要:
A method is provided that includes using an antisense approach to reverse and/or delay an autoimmune diabetes condition in vivo. The oligonucleotides are targeted to bind to primary transcripts CD40, CD80, CD86 and their combinations.
摘要:
A method is provided that includes using an antisense approach to reverse and/or delay an autoimmune diabetes condition in vivo. The oligonucleotides are targeted to bind to primary transcripts CD40, CD80, CD86 and their combinations.
摘要:
AS-oligonucleotides are delivered in microsphere form in order to induce dendritic cell tolerance, particularly in the non-obese-diabetic (NOD) mouse model. The microspheres incorporate antisense (AS) oligonucleotides. A process includes using an antisense approach to prevent an autoimmune diabetes condition in NOD mice in vivo and in situ. The oligonucleotides are targeted to bind to primary transcripts CD40, CD80, CD86 and their combinations.
摘要:
AS-oligonucleotides are delivered in microsphere form in order to induce dendritic cell tolerance, particularly in the non-obese-diabetic (NOD) mouse model. The microspheres incorporate antisense (AS) oligonucleotides. A process includes using an antisense approach to prevent an autoimmune diabetes condition in NOD mice in vivo and in situ. The oligonucleotides are targeted to bind to primary transcripts CD40, CD80, CD86 and their combinations.
摘要:
The present disclosure is related to microparticle compositions, in which the microparticles are made of nucleic acids and non-polymeric cations, which are suitable for administration to moist or aqueous target locations (e.g., the lung tissue), where the substantially spherical nucleic acid microparticles release the nucleic acids through dissolution, allowing the released nucleic acids to freely interact with the target cells.
摘要:
The present disclosure is related to microparticle compositions, in which the microparticles are made of nucleic acids and non-polymeric cations, which are suitable for administration to moist or aqueous target locations (e.g., the lung tissue), where the substantially spherical nucleic acid microparticles release the nucleic acids through dissolution, allowing the released nucleic acids to freely interact with the target cells.
摘要:
A flexible heating cover assembly for an apparatus for heating samples of biological material with substantial temperature uniformity includes a housing having a plurality of engageable enclosure components; a resistive heater having a plurality of heater element areas; a heater backing plate providing stability to the resistive heater; a force distribution system that distributes a force over the heater backing plate; and a support plate providing stiffness for the force distribution system, wherein the arrangement of the resistive heater, the heater backing plate, the force distribution system and the support plate provide substantial temperature uniformity among a plurality of sample tubes for receiving samples of biological material. The flexible heating cover assembly improves the uniformity, efficiency, quality, reliability and controllability of the thermal response during thermal cycling of the biological material.