摘要:
A manner of providing for re-convergence in a dual homing network following the failure of one of the dual homing links. When such a failure is detected, the port roles are recomputed using an xSTP protocol. Prior to the completion of the computation, the operEdge variable is set to true, typically resulting in a more rapid re-convergence that may achieve sub 50 ms performance. When the computation is complete, the operEdge variable is reset to “false. The xSTP protocol may be, for example, RSTP or MSTP. The invention may be implemented in a CE device attached to a VPLS core or other network, and may be used in a LAG environment.
摘要:
A manner of providing for re-convergence in a dual homing network following the failure of one of the dual homing links. When such a failure is detected, the port roles are recomputed using an xSTP protocol. Prior to the completion of the computation, the operEdge variable is set to true, typically resulting in a more rapid re-convergence that may achieve sub 50 ms performance. When the computation is complete, the operEdge variable is reset to “false. The xSTP protocol may be, for example, RSTP or MSTP. The invention may be implemented in a CE device attached to a VPLS core or other network, and may be used in a LAG environment.
摘要:
A bridge (e.g., IEEE 802.1 bridge) and a method are described herein which ensure the proper propagation of a “cut” within a bridged network (e.g., Ethernet-based bridged network). In one embodiment, the bridge has a port role transitions (PRT) state machine which uses a first condition represented as (proposed && !agree) to transit to an X_PROPOSED state and a second condition represented as (! proposed && allSynced && !agree) ∥ (proposed && agree) to transit to an X_AGREED state (where X represents “ROOT”, “ALTERNATE” and “MASTER”). The first condition and the second condition are both defined such that the X_PROPOSED state is always entered before the X_AGREED state which ensures the proper propagation of a “cut” within the bridged network.
摘要:
A bridge (e.g., IEEE 802.1 bridge) and a method are described herein which ensure the proper propagation of a “cut” within a bridged network (e.g., Ethernet-based bridged network). In one embodiment, the bridge has a port role transitions (PRT) state machine which uses a first condition represented as (proposed && !agree) to transit to an X_PROPOSED state and a second condition represented as (! proposed && allSynced && !agree) ∥ (proposed && agree) to transit to an X_AGREED state (where X represents “ROOT”, “ALTERNATE” and “MASTER”). The first condition and the second condition are both defined such that the X_PROPOSED state is always entered before the X_AGREED state which ensures the proper propagation of a “cut” within the bridged network.
摘要:
A method comprising receiving at least one document that is associated with a life insurance policy; assigning a respective value to each of the at least one document, in which the value indicates a level of importance; determining a summation of the at least one document; determining an indication for the life insurance policy, in which the indication is based on the summation of the at least one document and at least one of the values; and displaying the indication.
摘要:
In a method for enabling facilitation of re-convergence, designation information for a first port of each one of a plurality of bridges in a multi-bridge ring is received and designation information for a second port of each one of a plurality of bridges in a multi-bridge ring is received. The first port of each one of a plurality of bridges is a first direction Ring Rapid Spanning Tree Protocol (RRSTP) port and the second port of each one of a plurality of bridges is a second direction RRSTP port. The first direction around the ring (e.g., a forward direction) is opposite the second direction around said ring (e.g., a backward direction). A first reserved RRSTP MAC address is associated with the first direction port of each one of the bridges and a second reserved MAC address is associated with the second direction port of each one of the bridges.
摘要:
The present invention features embodiments of alleviating the impact to a system of stack switches, as well as to neighboring nodes communicating with such a system, when a primary master switch to secondary master switch failover occurs. The features of the present invention, generally enables a system of stack switches to retain, for a fixed or indefinite period of time, its stack address even when multiple primary master to secondary master failovers occur. This way recalculation of certain protocols—e.g., spanning trees and link aggregations—and updating of certain tables—e.g., address resolution protocol (ARP) and routing tables—are minimized.
摘要:
An exemplary method directs client devices client devices in a computing network to a remediation node. A subset of the client devices to receives remediation services is identified with a single common label. Upon determining that one of the client devices originating a communication request packet is identified by the single common label, processing the communication request packet by routing the communication request packet to a redirection server, and transmitting from the redirection server to the one client device a hypertext transfer protocol (HTTP) command specifying that the one client device redirect communications to the remediation node so that remediation services can be supplied to the one client device via the remediation node.
摘要:
In an embodiment, a method is disclosed for operating a network having a group of bridges connected together to form a ring, each bridge having two ports assigned to the ring to form a group of ring ports. The claimed embodiment includes forwarding information through the ring according to one or more spanning tree instances, each instance designating one of the group of ring ports as a respective alternate port that is in a state of discarding. Responsive to learning of a failure by a bridge within the ring, a determination is made, for each spanning tree instance, whether the bridge contains a respective alternate port and if the bridge contains a respective alternate port, changing the state of the respective alternate port to forwarding.
摘要:
The present invention features embodiments of alleviating the impact to a system of stack switches, as well as to neighboring nodes communicating with such a system, when a primary master switch to secondary master switch failover occurs. The features of the present invention, generally enables a system of stack switches to retain, for a fixed or indefinite period of time, its stack address even when multiple primary master to secondary master failovers occur. This way recalculation of certain protocols—e.g., spanning trees and link aggregations—and updating of certain tables—e.g., address resolution protocol (ARP) and routing tables—are minimized.