摘要:
An eyeglass (10) is adapted for providing an ophthalmic vision and a supplementary vision to a wearer of said eye-glass, both ophthalmic and supplementary visions being sharp during respective periods. To this purpose, a transparent active device (3) is located between the back face (BF) of the eyeglass and a light-conducting element (2), this latter being embedded within the eyeglass and dedicated to output the light of the supplementary vision. The transparent active device switches between two optical power values, which are dedicated to make sharp the ophthalmic vision and the supplementary vision, respectively.
摘要:
The invention relates to a transparent optical element including an assembly of cells having variable respective depths as measured in a direction perpendicular to a surface of the element having said cells. The cells can be filled with a gas or with mixtures of at least two components having different light refraction index values. The variation of the cell depth increases the variation of an equivalent value of the light refraction index associated with each cell, and reduces the roughness of a lens equivalent to the optical element.
摘要:
The invention relates to polarization mode dispersion; writing index variations in a grating written in an optical fiber generates polarization mode dispersion. The invention proposes to compensate this polarization mode dispersion by mechanical curvature of the fiber. The invention provides a simple method of compensating polarization mode dispersion effectively and improving the performance of a grating written in a fiber; it applies in particular to Bragg gratings.
摘要:
An optical fiber with a large effective surface area has holes at points in at least two layers concentric with the fiber of points of a regular matrix. The holes in one layer have the same dimensions and occupy all the available points in the layer. In at least two layers the holes have different dimensions.
摘要:
The invention concerns an optical coupler formed of a photonic optical fiber (2) assembled by melting and stretching with at least one multimode optical fiber (4, 6). The phototonic fiber can be used to inject or extract a signal, whereas the multimode fibers can be used to inject pump light. The invention is able to in particular effectively couple multimode pumps in a laser cavity formed by a double cladding fiber. In this case, the optical fiber is not used to inject a signal, but to provide the coupler with a digital opening and a diameter adapted to those of the cavity. The invention is also able to couple one or several multimode pumps in a double cladding fiber. In this case, this makes it possible to retain in the coupler for the signal transmitted through the photonic fiber a mode diameter greater than or equal to the mode diameter at the inlet or outlet of the coupler.
摘要:
The invention relates to a transparent optical element including an assembly of cells having variable respective depths as measured in a direction perpendicular to a surface of the element having said cells. The cells can be filled with a gas or with mixtures of at least two components having different light refraction index values. The variation of the cell depth increases the variation of an equivalent value of the light refraction index associated with each cell, and reduces the roughness of a lens equivalent to the optical element.
摘要:
The invention proposes a double-clad photonic optical fiber presenting: a fiber core, first cladding surrounding the fiber core, and second cladding surrounding the first cladding; at least one hole in the fiber core; and doping using a rare earth ion, at least in the core of the fiber. The invention makes it possible to obtain a double-clad fiber with good overlap between the signal and a pump injected into the core. It improves amplification efficiency in double-clad optical amplifiers where the signal is injected into the core of the fiber and the pump into the first cladding.
摘要:
An optical fiber with a large effective surface area has holes at points in at least two layers concentric with the fiber of points of a regular matrix. The holes in one layer have the same dimensions and occupy all the available points in the layer. In at least two layers the holes have different dimensions and there is at least one layer with no holes.