摘要:
An improved high resolution method and apparatus are described for sensing and determining the spatial coordinates of a movable object with respect to a energized conductive surface. The coordinates of the object are precisely measured with respect to a two-dimensional coordinate system independent of the third orthogonal dimension, thereby avoiding significant measurement errors due to variations of the object position in the third orthogonal dimension. The system also ascertains the coordinate position of the object in this third dimension, which can then be utilized as an independent control variable in the system. Further, the system can accommodate a number of energized conductive surfaces over which the object may be positioned and can determine the spatial coordinates of the object with respect to any such surface. In general, the system of the present invention can ascertain the generalized n-tuple position vector of the object with respect to each of a plurality of generalized, energized conductive surfaces. In any of the foregoing forms, the energized conductive surfaces can be transparent. The system described improves the precision and accuracy of the location of the selected point and hence the precision and accuracy of the spatial coordinates calculated by the system for display. The improvement in system performance is the result of innovations in fundamental design concepts utilized throughout the system.
摘要:
An improved high resolution method and apparatus are described for sensing and determining the spatial coordinates of a movable object with respect to a energized conductive surface. The coordinates of the object are precisely measured with respect to a two-dimensional coordinate system independent of the third orthogonal dimension, thereby avoiding significant measurement errors due to variations of the object position in the third orthogonal dimension. The system also ascertains the coordinate position of the object in this third dimension, which can then be utilized as an independent control variable in the system. Further, the system can accommodate a number of energized conductive surfaces over which the object may be positioned and can determine the spatial coordinates of the object with respect to any such surface. In general, the system of the present invention can ascertain the generalized n-tuple position vector of the object with respect to each of a plurality of generalized, energized conductive surfaces. In any of the foregoing forms, the energized conductive surfaces can be transparent. The system described improves the precision and accuracy of the location of the selected point and hence the precision and accuracy of the spatial coordinates calculated by the system for display. The improvement in system performance is the result of innovations in fundamental design concepts utilized throughout the system.
摘要:
An improved high resolution method and apparatus are described for sensing and determining the spatial coordinates of a movable object with respect to a energized conductive surface. The coordinates of the object are precisely measured with respect to a two-dimensional coordinate system independent of the third orthogonal dimension, thereby avoiding significant measurement errors due to variations of the object position in the third orthogonal dimension. The system also ascertains the coordinate position of the object in this third dimension, which can then be utilized as an independent control variable in the system. Further, the system can accommodate a number of energized conductive surfaces over which the object may be positioned and can determine the spatial coordinates of the object with respect to any such surface. In general, the system of the present invention can ascertain the generalized n-tuple position vector of the object with respect to each of a plurality of generalized, energized conductive surfaces. In any of the foregoing forms, the energized conductive surfaces can be transparent. The system described improves the precision and accuracy of the location of the selected point and hence the precision and accuracy of the spatial coordinates calculated by the system for display. The improvement in system performance is the result of innovations in fundamental design concepts utilized throughout the system.
摘要:
An improved high resolution method and apparatus are described for sensing and determining the spatial coordinates of a movable object with respect to a energized conductive surface. The coordinates of the object are precisely measured with respect to a two-dimensional coordinate system independent of the third orthogonal dimension, thereby avoiding significant measurement errors due to variations of the object position in the third orthogonal dimension. The system also ascertains the coordinate position of the object in this third dimension, which can then be utilized as an independent control variable in the system. Further, the system can accommodate a number of energized conductive surfaces over which the object may be positioned and can determine the spatial coordinates of the object with respect to any such surface. In general, the system of the present invention can ascertain the generalized n-tuple position vector of the object with respect to each of a plurality of generalized, energized conductive surfaces. In any of the foregoing forms, the energized conductive surfaces can be transparent. The system described improves the precision and accuracy of the location of the selected point and hence the precision and accuracy of the spatial coordinates calculated by the system for display. The improvement in system performance is the result of innovations in fundamental design concepts utilized throughout the system.
摘要:
A universal radiographic/fluoroscopic room includes a digital imaging platform adapted to occupy operating and non-operating positions. A park function automatically moves the digital imaging platform between the operating and non-operating positions without requiring operator effort. The digital imaging platform has local and remote control panels having substantially duplicate functions. The remote control panel allows the operator to control operation of the digital imaging platform from a location shielded from X-ray exposure. Methods and apparatus are provided to ensure safe, predictable, and consistent operation from all control panels. The operator selects any available operating mode, including auto-bucky, auto-wall, auto-table, auto-table/wall, servo-tomo, conventional stepping, stepped-digital, auto-step, and auto-step-center modes, using a control panel. The control system automatically determines which system components are required to perform that type of examination, moves the components into operational or storage positions as required, and prepares each component for operation.
摘要:
A universal radiographic apparatus that allows an operator to select between conventional radiographic mode and linear tomographic mode. In conventional radiographic mode of operation, several automatic modes are provided. An x-ray tube mounted to a tube crane positioned above an elevating table can be accurately controlled in longitudinal and vertical movement, as well as in x-ray tube angulation. In linear tomographic mode, a table bucky is moved laterally in opposition to movement of the tube crane, with angulation keeping the tube aimed at the bucky. In conventional radiographic mode, the system supports an auto bucky mode, where the table bucky automatically tracks tubecrane motion, or an auto table mode, where the tube crane tracks table vertical motion to maintain a fixed SID. In an auto wall mode, the tube crane tracks vertical movement of an associated wall bucky.
摘要:
A universal radiographic/fluoroscopic "room" is constructed according to the present invention by combining a versatile group of X-ray examination system components, electrical and mechanical drive components, and sensing components, under the supervision of a flexible control system, to form a universal diagnostic medical imaging system capable of performing radiographic, fluoroscopic, tomographic, and stepped examinations in several different operator-selectable configurations. The operator selects any available operating mode, including auto-bucky, auto-wall, auto-table, auto-table/wall, servo-tomo, conventional stepping, stepped-digital, auto-step, and auto-step-center modes, using a a control panel. The control system automatically determines which system components are required to perform that type of examination, moves the components into operational or storage positions as required, and prepares each component for operation. The operator need not manually reconfigure the equipment. In "stepped-digital" modes useful for peripheral angiography, an under-table X-ray tube and over-table image intensifier execute a series of radiographic exposures at preselected locations. The digital imaging platform is moved while the patient remains stationary. This reduces motion artifacts. For each step, a test fluoroscopic exposure is performed under automatic brightness control to determine an optimum technique. The technique so determined is converted for use in a subsequent radiographic exposure. The operator observes the flow of the contrast medium during the test fluoroscopic exposure and commands the radiographic exposure when the contrast medium arrives at the desired position in the image. Alternatively, the control system may detect the presence of the contrast medium in the image by comparing a change in image contrast with a previously observed threshold change.
摘要:
A radiographic/fluoroscopic imaging system provides rapid transition from fluoroscopic to radiographic imaging mode by maintaining the X-ray tube high voltage, increasing the filament current, allowing X-ray tube current to increase toward the desired radiographic current, and terminating exposure when the desired X-ray dose has been achieved. Rapid transition from radiographic to fluoroscopic imaging mode is provided by reducing x-ray tube high voltage to produce an equivalent fluoroscopic-level x-ray output at high initial current, dropping filament current, and enabling ABS control of the high-voltage. As x-ray tube current drops, ABS correspondingly increase high voltage to maintain the desired output. The imaging system obtains movement-related information by analyzing a video signal (such as from fluoroscopic image or an image from an optical camera trained on the patient), or from operator movement requests. The imaging system uses movement-related information to responsively control fluoroscopic pulse rate or other imaging parameters. The imaging system can also use such information to initiate a radiographic exposure, or advance to the next step of an operator programmed examination consisting of interspersed fluoroscopic and radiographic exposures. This results in a lower dose to both the patient and the examiner, consistent with high image quality.
摘要:
A universal radiographic/fluoroscopic "room" is constructed according to the present invention by combining a versatile group of X-ray examination system components, electrical and mechanical drive components, and sensing components, under the supervision of a flexible control system, to form a universal diagnostic medical imaging system capable of performing radiographic, fluoroscopic, tomographic, and stepped examinations in several different operator-selectable configurations. The operator selects any available operating mode, including auto-bucky, auto-wall, auto-table, auto-table/wall, servo-tomo, conventional stepping, stepped-digital, auto-step, and auto-step-center modes, using a a control panel. The control system automatically determines which system components are required to perform that type of examination, moves the components into operational or storage positions as required, and prepares each component for operation. The operator need not manually reconfigure the equipment. In "stepped-digital" modes useful for peripheral angiography, an under-table X-ray tube and over-table image intensifier execute a series of radiographic exposures at preselected locations. The digital imaging platform is moved while the patient remains stationary. This reduces motion artifacts. For each step, a test fluoroscopic exposure is performed under automatic brightness control to determine an optimum technique. The technique so determined is converted for use in a subsequent radiographic exposure. The operator observes the flow of the contrast medium during the test fluoroscopic exposure and commands the radiographic exposure when the contrast medium arrives at the desired position in the image. Alternatively, the control system may detect the presence of the contrast medium in the image by comparing a change in image contrast with a previously observed threshold change.
摘要:
A method for controlling output of an x-ray source to optimize x-ray energy arriving at an associated x-ray receptor during linear tomographic examination. The method comprises the steps of selecting tomographic sweep parameters, predicting a set of x-ray source control parameters based, at least in part, upon the selected tomographic sweep parameters, and controlling x-ray source output in accordance with the set of x-ray source control parameters to optimize x-ray energy arriving at the associated x-ray receptor. Apparatus for controlling output of an x-ray source is also disclosed.