摘要:
A heat exchange assembly for a cooling system, having first and second cooling loops, includes a housing with a first coolant inlet and outlet and a second coolant inlet and outlet, respectively coupling to the first and second cooling loops, and multiple heat exchange elements. Each heat exchange element includes a first set and a second set of coolant flow passages intersecting different pairs of parallel face surfaces of the elements, with the second set of flow passages extending in a transverse direction to the first set of flow passages. The heat exchange elements are disposed within the housing with the first set of flow passages oriented in a first common direction in fluid communication with the first coolant inlet and outlet and the second set of flow passages oriented in a second common direction in fluid communication with the second coolant inlet and outlet of the housing.
摘要:
A redundant assembly for an air and liquid cooled module is provided. The redundant cooling assembly comprises an air and liquid cooled module having a cold plate in thermal communication with a side attached auxiliary drawer. The auxiliary drawer houses a heat exchanger, a liquid pump with piping such that the heat exchanger, the liquid pump with piping and the cold plate form a closed liquid cooling loop. The auxillary drawer also housing an air moving device such that air can readily pass through the air moving device and the heat exchanger in order to provide air cooling. In one embodiment of the invention, fins are disposed on the cold plate to provide cooling in case the pump or the air moving device or both encounter a failure. In alternate embodiments, multiple pumps and/or multiple air moving devices can be used with or without the cold plate fins to provide redundancies.
摘要:
A cooling apparatus and method of fabrication are provided for facilitating removal of heat from a heat generating electronic device. The cooling apparatus includes an integrated coolant inlet and outlet manifold having a plurality of inlet orifices for injecting coolant onto a surface to be cooled, and a plurality of outlet openings for exhausting coolant after impinging on the surface to be cooled. The inlet orifices and the outlet openings are interspersed in a common surface of the integrated manifold. A plurality of exit openings are also provided on at least one edge surface of the manifold. These exit openings are in fluid communication through the manifold with the outlet openings to facilitate exhausting of coolant through the outlet openings and minimize pressure drop through the manifold. At least one surface plane projection of the at least one edge surface intersects a surface plane projection of the common surface.
摘要:
A cooling apparatus for an electronics assembly having a substrate and one or more electronics devices includes an enclosure sealably engaging the substrate to form a cavity, with the electronics devices and a heat exchange assembly being disposed within the cavity. The heat exchange assembly defines a primary coolant flow path and a separate, secondary coolant flow path. The primary coolant flow path includes first and second chambers in fluid communication, and the secondary flow path includes a third chamber disposed between the first and second chambers. The heat exchange assembly provides a first thermal conduction path between primary coolant in the first chamber and secondary coolant in the third chamber, and a second thermal conduction path between primary coolant in the second chamber and secondary coolant in the third chamber. The heat exchange assembly further includes coolant nozzles to direct primary coolant towards the electronics devices.
摘要:
A cooling approach is provided for cooling an electronics subsystem, such as an electronics rack. The cooling approach includes a coolant conditioning unit and a thermal capacitor unit. The coolant conditioning unit has a heat exchanger, a first cooling loop and a second cooling loop. The first cooling loop receives facility coolant from a facility coolant source and passes at least a portion thereof to the heat exchanger. The second cooling loop provides system coolant to the electronics subsystem, and expels heat in the heat exchanger from the electronics subsystem to the facility coolant in the first cooling loop. The thermal capacitor unit is in fluid communication with the second cooling loop to maintain temperature of the system coolant within a defined range for a period of time upon shutdown or failure of the facility coolant in the first cooling loop, thereby allowing continued operation of the electronics subsystem.
摘要:
A method and incorporated hybrid air and liquid cooled module for cooling electronic components of a computing system is disclosed. The module is used for cooling electronic components and comprise a closed loop liquid cooled assembly in thermal communication with an air cooled assembly, such that the air cooled assembly is at least partially included in the liquid cooled assembly.
摘要:
Cooling apparatuses and methods are provided for cooling an assembly including a planar support structure supporting multiple electronics components. The cooling apparatus includes: multiple discrete cold plates, each having a coolant inlet, coolant outlet and at least one coolant carrying channel disposed therebetween; and a manifold for distributing coolant to and exhausting coolant from the cold plates. The cooling apparatus also includes multiple flexible hoses connecting the coolant inlets of the cold plates to the manifold, as well as the coolant outlets to the manifold, with each hose segment being disposed between a respective cold plate and the manifold. A biasing mechanism biases the cold plates away from the manifold and towards the electronics components, and at least one fastener secures the manifold to the support structure, compressing the biasing mechanism, and thereby forcing the parallel coupled cold plates towards their respective electronics components to ensure good thermal interface.
摘要:
Apparatus and method are provided for facilitating cooling of an electronics rack employing a closed loop heat exchange system. The closed loop heat exchange system includes a first heat exchanger, a second heat exchanger, and a coolant distribution loop connecting the first heat exchanger and the second heat exchanger. When operational, the coolant distribution loop allows coolant to circulate between the first heat exchanger and the second heat exchanger. The closed loop heat exchange system couples to the electronics rack with the first heat exchanger disposed at an air inlet side of the electronics rack, and the first heat exchanger and the second heat exchanger disposed in different inlet-to-outlet air flow paths through the electronics rack to reduce an imbalance in air flow temperature of the different inlet-to-outlet air flow paths through the electronics rack.
摘要:
An isolation valve assembly, a coolant connect/disconnect assembly, a cooled multi-blade electronics center, and methods of fabrication thereof are provided employing an isolation valve and actuation mechanism. The isolation valve is disposed within at least one of a coolant supply or return line providing liquid coolant to the electronics subsystem. The actuation member is coupled to the isolation valve to automatically translate a linear motion, resulting from insertion of the electronics subsystem into the operational position within the electronics housing, into a rotational motion to open the isolation valve and allow coolant to pass. The actuation mechanism, which operates to automatically close the isolation valve when the liquid cooled electronics subsystem is withdrawn from the operational position, can be employed in combination with a compression valve coupling, with one fitting of the compression valve coupling being disposed serially in fluid communication with the isolation valve.
摘要:
Cooling apparatuses and methods are provided for cooling an assembly including a substrate supporting multiple electronics components. The cooling apparatus includes: multiple discrete cold plates, each having a coolant inlet, a coolant outlet and at least one coolant chamber disposed therebetween; and multiple coolant-carrying tubes, each tube extending from a respective cold plate and being in fluid communication with the coolant inlet or outlet of the cold plate. An enclosure is provided having a perimeter region which engages the substrate to form a cavity with the electronics components and cold plates being disposed within the cavity. The enclosure is configured with multiple bores, each bore being sized and located to receive a respective coolant-carrying tube of the tubes extending from the cold plates. Further, the enclosure is configured with a manifold in fluid communication with the tubes for distributing coolant in parallel to the cold plates.