摘要:
A three-dimensional display including a display panel and a phase retardation film is provided. The display panel has a plurality of first pixel regions and a plurality of second pixel regions arranged in arrays. The phase retardation film is configured on a surface of the display panel. Here, the phase retardation film has a plurality of first retardation regions and a plurality of second retardation regions that are arranged alternately. The first retardation regions have the same phase retardation, the second retardation regions have the same phase retardation, and the phase retardation of the first retardation regions is different from that of the second retardation regions. All the regions of the phase retardation film have the same optical transmittance. A displaying method adaptable to the three-dimensional display is also provided.
摘要:
A three-dimensional display including a display panel and a phase retardation film is provided. The display panel has a plurality of first pixel regions and a plurality of second pixel regions arranged in arrays. The phase retardation film is configured on a surface of the display panel. Here, the phase retardation film has a plurality of first retardation regions and a plurality of second retardation regions that are arranged alternately. The first retardation regions have the same phase retardation, the second retardation regions have the same phase retardation, and the phase retardation of the first retardation regions is different from that of the second retardation regions. All the regions of the phase retardation film have the same optical transmittance. A displaying method adaptable to the three-dimensional display is also provided.
摘要:
A three-dimensional (3D) display including a display panel and a phase retardation film is provided. The display panel has a plurality of first pixel regions and a plurality of second pixel regions that are arranged as an array. The phase retardation film is disposed on the surface of the display panel. The phase retardation film has a plurality of first retardation regions and a plurality of second retardation regions that are alternately arranged. The first retardation regions have the same phase retardation, the second retardation regions have the same phase retardation, and the phase retardation of the first retardation regions is different from that of the second retardation regions. All the regions of the phase retardation film have the same transmittance. A display method adaptable to the 3D display is also provided.
摘要:
A three-dimensional (3D) display including a display panel and a phase retardation film is provided. The display panel has a plurality of first pixel regions and a plurality of second pixel regions that are arranged as an array. The phase retardation film is disposed on the surface of the display panel. The phase retardation film has a plurality of first retardation regions and a plurality of second retardation regions that are alternately arranged. The first retardation regions have the same phase retardation, the second retardation regions have the same phase retardation, and the phase retardation of the first retardation regions is different from that of the second retardation regions. All the regions of the phase retardation film have the same transmittance. A display method adaptable to the 3D display is also provided.
摘要:
A liquid crystal display panel includes a first substrate, a second substrate, a liquid crystal layer, a plurality of first regions and a plurality of second regions. The first regions and the second regions are formed on the first substrate and the second substrate. In a narrow viewing mode, the luminous flux of the first regions along a first viewing direction is different from that of the first regions along a second viewing direction opposite to the first viewing direction, and the luminous flux of the second regions along the first viewing direction is substantially different from that of the first regions along the first viewing direction.
摘要:
A method for driving a pixel is disclosed. The method comprises the steps of determining a first predetermined gray-level and a second predetermined gray-level which are corresponding to a target gray-level according to the target gray-level of the pixel, wherein an equivalent gray-level of sum of the first predetermined gray-level and the second predetermined gray-level is equal to the target gray-level, thereafter, generating a first driving voltage and a second driving voltage according to the first predetermined gray-level and the second predetermined gray-level for respectively driving a first sub-pixel and a second sub-pixel within the pixel during a frame period. The first driving voltage is greater than the second driving voltage when the equivalent gray-level is small than a first setting gray-level; the first driving voltage is small than the second driving voltage when the equivalent gray-level is greater than the first setting gray-level.
摘要:
A method for driving a pixel is provided. The method includes determining a first predetermined gray-level and a second predetermined gray-level which are corresponding to a target gray-level according to the target gray-level of the pixel, wherein an equivalent gray-level corresponding to the first predetermined gray-level and the second predetermined gray-level is equal to the target gray-level, thereafter, generating a first driving voltage and a second driving voltage according to the first predetermined gray-level and the second predetermined gray-level for respectively driving a first sub-pixel and a second sub-pixel within the pixel during a frame period. The first driving voltage is greater than the second driving voltage when the equivalent gray-level is small than a first setting gray-level; the first driving voltage is small than the second driving voltage when the equivalent gray-level is greater than the first setting gray-level.
摘要:
A liquid crystal display panel includes a first substrate, a second substrate, a liquid crystal layer, a plurality of first regions and a plurality of second regions. The first regions and the second regions are formed on the first substrate and the second substrate. In a narrow viewing mode, the luminous flux of the first regions along a first viewing direction is different from that of the first regions along a second viewing direction opposite to the first viewing direction, and the luminous flux of the second regions along the first viewing direction is substantially different from that of the first regions along the first viewing direction.
摘要:
An exemplary stereoscopic display device includes a backlight module, a display panel, and a polarizer panel. The backlight module provides a light source for the stereoscopic display device. The display panel is used for displaying a received image. The polarizer panel includes a plurality of polarizer elements. The states of the polarizer elements are switched by an ON/OFF operation for switching a polarization angle of the polarizer panel. The ON/OFF operation of the polarizer panel includes an enabled time interval and a disabled time interval. The polarizer elements provide two different polarization angles respectively in the enabled and disabled time intervals. The enabled time interval and the disabled time interval have different time lengths from each other. A stereoscopic image displaying method is also disclosed.
摘要:
A pixel array including a plurality of scan lines, a plurality of data lines, and a plurality of sub-pixel is provided. Each of the sub-pixel arranged in the nth row includes a first switch, a second switch, a first pixel electrode, a second pixel electrode, and a third switch, wherein the first switch and the second switch are electrically connected to the nth scan line and the mth data line, the first pixel electrode is electrically connected to the first switch, the second pixel electrode is electrically connected to a signal output terminal of the second switch. The first pixel electrode has a first aperture above the signal output terminal. The third switch is electrically connected to the (n+1)th scan line and the second pixel electrode, and the second pixel electrode has a second aperture above a floating terminal of the third switch.