摘要:
Architecture that provides the integration of automatic speech recognition (ASR) and machine translation (MT) components of a full speech translation system. The architecture is an integrative and discriminative approach that employs an end-to-end objective function (the conditional probability of the translated sentence (target) given the source language's acoustic signal, as well as the associated BLEU score in the translation, as a goal in the integrated system. This goal defines the theoretically correct variables to determine the speech translation system output using a Bayesian decision rule. These theoretically correct variables are modified in practical use due to known imperfections of the various models used in building the full speech translation system. The disclosed approach also employs automatic training of these variables using minimum classification error (MCE) criterion. The measurable BLEU scores are used to facilitate the implementation of the MCE training procedure in a step that defines the class-specific discriminant function.
摘要:
Architecture that provides the integration of automatic speech recognition (ASR) and machine translation (MT) components of a full speech translation system. The architecture is an integrative and discriminative approach that employs an end-to-end objective function (the conditional probability of the translated sentence (target) given the source language's acoustic signal, as well as the associated BLEU score in the translation, as a goal in the integrated system. This goal defines the theoretically correct variables to determine the speech translation system output using a Bayesian decision rule. These theoretically correct variables are modified in practical use due to known imperfections of the various models used in building the full speech translation system. The disclosed approach also employs automatic training of these variables using minimum classification error (MCE) criterion. The measurable BLEU scores are used to facilitate the implementation of the MCE training procedure in a step that defines the class-specific discriminant function.
摘要:
A method and apparatus for training an acoustic model are disclosed. A training corpus is accessed and converted into an initial acoustic model. Scores are calculated for a correct class and competitive classes, respectively, for each token given the initial acoustic model. Also, a sample-adaptive window bandwidth is calculated for each training token. From the calculated scores and the sample-adaptive window bandwidth values, loss values are calculated based on a loss function. The loss function, which may be derived from a Bayesian risk minimization viewpoint, can include a margin value that moves a decision boundary such that token-to-boundary distances for correct tokens that are near the decision boundary are maximized. The margin can either be a fixed margin or can vary monotonically as a function of algorithm iterations. The acoustic model is updated based on the calculated loss values. This process can be repeated until an empirical convergence is met.
摘要:
A method and apparatus for training an acoustic model are disclosed. A training corpus is accessed and converted into an initial acoustic model. Scores are calculated for a correct class and competitive classes, respectively, for each token given the initial acoustic model. Also, a sample-adaptive window bandwidth is calculated for each training token. From the calculated scores and the sample-adaptive window bandwidth values, loss values are calculated based on a loss function. The loss function, which may be derived from a Bayesian risk minimization viewpoint, can include a margin value that moves a decision boundary such that token-to-boundary distances for correct tokens that are near the decision boundary are maximized. The margin can either be a fixed margin or can vary monotonically as a function of algorithm iterations. The acoustic model is updated based on the calculated loss values. This process can be repeated until an empirical convergence is met.
摘要:
Described is a technology for learning a foreign language or other subject. Answers (e.g., translations) to questions (e.g., sentences to translate) received from learners are combined into a combined answer that serves as a representative model answer for those learners. The questions also may be provided to machine subsystems to generate machine answers, e.g., machine translators, with those machine answers used in the combined answer. The combined answer is used to evaluate each learner's individual answer. The evaluation may be used to compute profile information that is then fed back for use in selecting further questions, e.g., more difficult sentences as the learners progress. Also described is integrating the platform/technology into a web service.
摘要:
A speech recognition system described herein includes a receiver component that receives a distorted speech utterance. The speech recognition also includes an updater component that is in communication with a first model and a second model, wherein the updater component automatically updates parameters of the second model based at least in part upon joint estimates of additive and convolutive distortions output by the first model, wherein the joint estimates of additive and convolutive distortions are estimates of distortions based on a phase-sensitive model in the speech utterance received by the receiver component. Further, distortions other than additive and convolutive distortions, including other stationary and nonstationary sources, can also be estimated used to update the parameters of the second model.
摘要:
A speech recognition system uses Gaussian mixture variable-parameter hidden Markov models (VPHMMs) to recognize speech under many different conditions. Each Gaussian mixture component of the VPHMMs is characterized by a mean parameter μ and a variance parameter Σ. Each of these Gaussian parameters varies as a function of at least one environmental conditioning parameter, such as, but not limited to, instantaneous signal-to-noise-ratio (SNR). The way in which a Gaussian parameter varies with the environmental conditioning parameter(s) can be approximated as a piecewise function, such as a cubic spline function. Further, the recognition system formulates the mean parameter μ and the variance parameter Σ of each Gaussian mixture component in an efficient form that accommodates the use of discriminative training and parameter sharing. Parameter sharing is carried out so that the otherwise very large number of parameters in the VPHMMs can be effectively reduced with practically feasible amounts of training data.
摘要:
A speech recognition system uses Gaussian mixture variable-parameter hidden Markov models (VPHMMs) to recognize speech. The VPHMMs include Gaussian parameters that vary as a function of at least one environmental conditioning parameter. The relationship of each Gaussian parameter to the environmental conditioning parameter(s) is modeled using a piecewise fitting approach, such as by using spline functions. In a training phase, the recognition system can use clustering to identify classes of spline functions, each class grouping together spline functions which are similar to each other based on some distance measure. The recognition system can then store sets of spline parameters that represent respective classes of spline functions. An instance of a spline function that belongs to a class can make reference to an associated shared set of spline parameters. The Gaussian parameters can be represented in an efficient form that accommodates the use of sharing in the above-summarized manner.
摘要:
A time-asynchronous lattice-constrained search algorithm is developed and used to process a linguistic model of speech that has a long-contextual-span capability. In the algorithm, nodes and links in the lattices developed from the model are expanded via look-ahead. Heuristics as utilized by a search algorithm are estimated. Additionally, pruning strategies can be applied to speed up the search.
摘要:
A method and apparatus identify a clean speech signal from a noisy speech signal. To do this, a clean speech value and a noise value are estimated from the noisy speech signal. The clean speech value and the noise value are then used to define a gain on a filter. The noisy speech signal is applied to the filter to produce the clean speech signal. Under some embodiments, the noise value and the clean speech value are used in both the numerator and the denominator of the filter gain, with the numerator being guaranteed to be positive.