摘要:
An organic/inorganic hybrid composite proton exchange membrane is provided. The proton exchange membrane includes an inorganic material of about 0.5-30 parts by weight and an organic material of about 99.5-70 parts by weight per 100 parts by weight of the proton exchange membrane. A surface area of the inorganic material is about 50-3000 m2/g. The organic material includes a sulfonated polymer or a phosphoric acid doped polymer.
摘要:
An organic/inorganic hybrid composite proton exchange membrane is provided. The proton exchange membrane includes an inorganic material of about 0.5-30 parts by weight and an organic material of about 99.5-70 parts by weight per 100 parts by weight of the proton exchange membrane. A surface area of the inorganic material is about 50-3000 m2/g. The organic material includes a sulfonated polymer or a phosphoric acid doped polymer.
摘要:
The present invention relates to a metal catalyst composition modified by a nitrogen-containing compound, which effectively reduces cathode catalyst poisoning. The catalyst composition applied on the anode also lowers the over-potential. The catalyst coupled with the nitrogen-containing compound has increased three-dimensional hindrance, which improves the distribution of the catalyst particles and improves the reaction activity.
摘要:
The present invention relates to a metal catalyst composition modified by a nitrogen-containing compound, which effectively reduces cathode catalyst poisoning. The catalyst composition applied on the anode also lowers the over-potential. The catalyst coupled with the nitrogen-containing compound has increased three-dimensional hindrance, which improves the distribution of the catalyst particles and improves the reaction activity.
摘要:
An electrode structure of a fuel cell for power generation comprises an anodic structure, a cathodic structure, and an ionic exchange membrane disposed between the anodic and cathodic structures. The anodic and cathodic structures respectively are formed by multi-layer structures, to reduce the fuel crossover from the anodic structure to the cathodic structure, to reduce the catalysts applied amount, and to increase an output electrical energy of the fuel cell. The multi-layer structure of the anodic structure comprises a thin platinum alloy black layer, a Pt alloy layer disposed on the carbon material, and a substrate.
摘要:
An electrode structure of a fuel cell for power generation comprises an anodic structure, a cathodic structure, and an ionic exchange membrane disposed between the anodic and cathodic structures. The anodic and cathodic structures respectively are formed by multi-layer structures, to reduce the fuel crossover from the anodic structure to the cathodic structure, to reduce the catalysts applied amount, and to increase an output electrical energy of the fuel cell. The multi-layer structure of the anodic structure comprises a thin platinum alloy black layer, a Pt alloy layer disposed on the carbon material, and a substrate.
摘要:
An electrode structure of a fuel cell for power generation comprises an anodic structure, a cathodic structure, and an ionic exchange membrane disposed between the anodic and cathodic structures. The anodic and cathodic structures respectively are formed by multi-layer structures, to reduce the fuel crossover from the anodic structure to the cathodic structure, to reduce the catalysts applied amount, and to increase an output electrical energy of the fuel cell. The multi-layer structure of the anodic structure comprises a thin platinum alloy black layer, a Pt alloy layer disposed on the carbon material, and a substrate.
摘要:
The present invention relates to a composition for enhancing the utilization of catalysts in fuel cell, comprising catalysts, proton-exchanged ionic polymers, and coupling agents. The coupling agents are bonded to the catalysts or catalyst carriers by a B1 functional group and bonded to the proton-exchanged ionic polymers by a B2 functional group. The present invention also relates to a method for enhancing the utilization of catalysts in fuel cell, comprising the steps of (a) utrasonicating catalysts; (b) adding coupling agents to bond to the catalysts; (c) adding a perfluoro polymer to form a catalyst-coupling agent-perfluoro polymer complex whereby developing stable dispersion; wherein the coupling agents in step (b) are bonded to the catalysts by a B1 functional group and bonded to a perfluoro polymer by a B2 functional group. The present invention also provides a complex for enhancing the utilization of catalysts in fuel cell, comprising catalysts, coupling agents, and proton-exchanged ionic polymers, wherein the coupling agents are bonded to the catalysts by a B1 functional group and bonded to the perfluoro polymer by a B2 functional group to form a complex.
摘要:
A method for manufacturing metal nano particles having a hollow structure is provided. First, a suitable reducing agent is added into a first metal salt solution, and first metal ions are reduced to form first metal nano particles. Next, after the reducing agent is decomposed, a second metal salt solution with a higher reduction potential than that of the first metal is added. Then, the first metal particles are oxidized to form first metal ions when the second metal ions are reduced on the surface of the first metal by electrochemical oxidation reduction reaction, and thus, second metal nano particles having a hollow structure and a larger surface area are obtained. The method is simple and the metal nano particles with uniform particle size are obtained by this method.
摘要:
A method for manufacturing metal nano particles having a hollow structure is provided. First, a suitable reducing agent is added into a first metal salt solution, and first metal ions are reduced to form first metal nano particles. Next, after the reducing agent is decomposed, a second metal salt solution with a higher reduction potential than that of the first metal is added. Then, the first metal particles are oxidized to form first metal ions when the second metal ions are reduced on the surface of the first metal by electrochemical oxidation reduction reaction, and thus, second metal nano particles having a hollow structure and a larger surface area are obtained. The method is simple and the metal nano particles with uniform particle size are obtained by this method.