摘要:
A method and apparatus for detecting and tracking moving objects in a noise environment cluttered with fast- and slow-moving objects and other time-varying background. A pair of phase conjugate light beams carrying the same spatial information commonly cancel each other out through an image subtraction process in a phase conjugate interferometer, wherein gratings are formed in a fast photorefractive phase conjugate mirror material. In the steady state, there is no output. When the optical path of one of the two phase conjugate beams is suddenly changed, the return beam loses its phase conjugate nature and the interferometer is out of balance, resulting in an observable output. The observable output lasts until the phase conjugate nature of the beam has recovered. The observable time of the output signal is roughly equal to the formation time of the grating. If the optical path changing time is slower than the formation time, the change of optical path becomes unobservable, because the index grating can follow the change. Thus, objects traveling at speeds which result in a path changing time which is slower than the formation time are not observable and do not clutter the output image view.
摘要:
A new type of optical correlator performs motion detection or background clutter suppression and correlation simultaneously in a single photorefractive crystal, and is useful for moving target identification and tracking and for stationary clutter rejection. The correlation is of the VanderLugt type and the motion detection or background clutter suppression is based on the erasing property of photorefractive crystals.
摘要:
Edge enhancement of an input image by four-wave mixing a first write beam with a second write beam in a photorefractive crystal, e.g., GaAs, achieved for VanderLugt optical correlation with an edge enhanced reference image by optimizing the power ratio of a second write beam to the first write beam, e.g., 70:1, and optimizing the power ratio of a read beam, which carries the reference image to the first write beam, e.g., 100:701. Liquid crystal TV panels are employed as spatial light modulators in order to change the input and reference images in real time.
摘要:
An optical memory for storing and/or reading data on an optical disk. The optical disk incorporates a material in which holographic gratings can be created at plural locations within the disk. An electro-optical head which is capable of creating these holographic gratings at any one of the plural locations is employed. The head is additionally capable of detecting the presence or absence of a holographic grating at any one of these plural locations. The presence of the holographic grating could indicate a first binary state and the absence of the holographic grating indicate a second state. Alternately, the electro-optical head could be used to vary the diffraction efficiency of the holographic gratings during their creation. In that case, the head would also be capable of detecting this variation in efficiency and produce a proportional detection signal. This signal would be used as an indicator of the value of the stored data element. The material of the optical disk is further capable of having multiple holographic gratings created at each one of the plural locations. These multiple holographic gratings are created via a beam of light from the electro-optical head which has a different wavelength or point of focus. In reading these holographic gratings, a beam of light generated by the electro-optical head is sequentially varied in wavelength or point of focus to correspond to the wavelength or point of focus and the sequence of wavelengths or points of focus employed to record each one of the data elements recorded.
摘要:
An optical memory for storing and/or reading data on an optical disk. The optical disk incorporates a material in which holographic gratings can be created, and subsequently detected, at plural locations within the disk by an electro-optical head. Creation and detection of holographic gratings with variable diffraction efficiency is possible with the electro-optical head. Multiple holographic gratings can also be created at each one of the plural locations via a beam of light which has a different wavelength or point of focus. These data elements can be read by the electro-optical head using a beam of light sequentially varied in wavelength or point of focus to correspond to the multiple holographic gratings to be recorded.