摘要:
The invention provides T-cell receptor (TCR) molecules comprising a Vα chain and a Vβ chain that bind peptides derived from the p53 protein, preferably, the human p53 protein. The TCR molecules include both heterodimeric molecules and single chain molecules which specifically bind a sequence preferably spanning about amino acid positions 264-272 of the p53 protein displayed in the context of an HLA molecule, preferably, HLA-A2.1. Also disclosed are methods for making and using such TCR molecules. The invention has a wide spectrum of useful application including therapeutic uses and use in the detection of cells expressing p53 protein.
摘要:
The invention provides T-cell receptor (TCR) molecules comprising a Vα chain and a Vβ chain that bind peptides derived from the p53 protein, preferably, the human p53 protein. The TCR molecules include both heterodimeric molecules and single chain molecules which specifically bind a sequence preferably spanning about amino acid positions 264-272 of the p53 protein displayed in the context of an HLA molecule, preferably, HLA-A2.1. Also disclosed are methods for making and using such TCR molecules. The invention has a wide spectrum of useful application including therapeutic uses and use in the detection of cells expressing p53 protein.
摘要:
The present invention relates to polyspecific binding molecules and particularly single-chain polyspecific binding molecules that include at least one single-chain T-cell receptor (sc-TCR) covalently linked through a peptide linker sequence to at least one single-chain antibody (sc-Ab). Further disclosed are methods and compositions for testing and using the molecules.
摘要:
The present invention relates to polyspecific binding molecules and particularly single-chain polyspecific binding molecules that include at least one single-chain T-cell receptor (sc-TCR) covalently linked through a peptide linker sequence to at least one single-chain antibody (sc-Ab). Further disclosed are methods and compositions for testing and using the molecules.
摘要:
The present invention relates to polyspecific binding molecules and particularly single-chain polyspecific binding molecules that include at least one single-chain T-cell receptor (sc-TCR) covalently linked through a peptide linker sequence to at least one single-chain antibody (sc-Ab). Further disclosed are methods and compositions for testing and using the molecules.
摘要:
Featured is T cell receptor complexes designed to redirect the immune system against various diseases. The T cell receptor complexes of the invention have been engineered to recognize target antigen in a functionally bispecific nature. Fusion protein complexes and protein conjugate complexes are comprised of high affinity antigen-specific TCR and biologically active proteins and/or effector molecules. Also featured is methods of production of T cell receptor fusion and conjugate complexes as well as therapeutic compositions for use of the complexes.
摘要:
The present invention relates to novel complexes of major histocompability complex (MHC) molecules and uses of such complexes. In particular, the invention relates to MHC fusion complexes that contain a MHC molecule with a peptide-binding groove and a presenting peptide covalently linked to the MHC protein. Fusion complexes of the invention are useful for a variety of applications including in vitro screens for identification and isolation of peptides that modulate activity of selected T cells, including peptides that are T cell receptor antagonists and partial agonists, methods of suppressing an immune response of a mammal and methods for inducing an immune response in a mammal.
摘要:
The present invention is related to methods of assaying potency of a vaccine composition, wherein the potency is a pre-defined minimum level of potential biological activity for the vaccine composition. The method includes providing a vaccine composition and delivering same to an antigen presenting cell, wherein the vaccine composition is processed into peptides and the peptides are presented by MHC complexes on the cell surface. An agent, such as a T cell receptor mimic, that is reactive against a specific peptide/MHC complex is provided and reacted with the vaccine-treated antigen presenting cell, whereby the agent binds to the cell surface of the vaccine-treated antigen presenting cell if the specific peptide/MHC complex recognized by the agent is present on the cell surface. A density of the specific peptide/MHC complex on the surface of the vaccine-treated antigen presenting cell is measured by agent binding. The potency of the vaccine is then determined based upon the measured density of specific peptide/MHC complex present on the surface of the vaccine-treated antigen presenting cell.
摘要:
The presently disclosed and claimed invention relates to a methodology of producing and utilizing antibodies that recognize peptides associated with a tumorigenic or disease state, wherein the peptides are displayed in the context of HLA molecules. These antibodies may be utilized in therapeutic methods of mediating cell lysis.
摘要:
The present invention relates to a methodology of producing antibodies that recognize peptides associated with a tumorigenic or disease state, wherein the peptides are displayed in the context of HLA molecules. These antibodies will mimic the specificity of a T cell receptor (TCR) but will have higher binding affinity such that the molecules may be used as therapeutic, diagnostic and research reagents. The method of producing a T-cell receptor mimic of the present invention includes identifying a peptide of interest, wherein the peptide of interest is capable of being presented by an MHC molecule. Then, an immunogen comprising at least one peptide/MHC complex is formed, wherein the peptide of the peptide/MHC complex is the peptide of interest. An effective amount of the immunogen is then administered to a host for eliciting an immune response, and serum collected from the host is assayed to determine if desired antibodies that recognize a three-dimensional presentation of the peptide in the binding groove of the MHC molecule are being produced. The desired antibodies can differentiate the peptide/MHC complex from the MHC molecule alone, the peptide alone, and a complex of MHC and irrelevant peptide. Finally, the desired antibodies are isolated.