Abstract:
In a multiphase, current mode controlled switching power supply, current through the inductors in the various phases is sensed to determine when to turn off the switching transistors. An AC current feedback path, sensing the ramping ripple current, is separate from the DC current path, sensing the lower frequency average current. A shared differential amplifier has its inputs multiplexed to receive only the DC component signals from all the phases. The gain of the amplifier is set so that the DC sense signal has the proper proportion to the AC sense signal. The output of the amplifier is sampled and held for each phase using a second multiplexer. The AC sense signal and the amplified DC sense signal, for each phase, are combined by a summing circuit. The composite sense signal is applied to a comparator for each phase to control the duty cycle of the associated switch.
Abstract:
In a multiphase, current mode controlled switching power supply, current through the inductors in the various phases is sensed to determine when to turn off the switching transistors. An AC current feedback path, sensing the ramping ripple current, is separate from the DC current path, sensing the lower frequency average current. A shared differential amplifier has its inputs multiplexed to receive only the DC component signals from all the phases. The gain of the amplifier is set so that the DC sense signal has the proper proportion to the AC sense signal. The output of the amplifier is sampled and held for each phase using a second multiplexer. The AC sense signal and the amplified DC sense signal, for each phase, are combined by a summing circuit. The composite sense signal is applied to a comparator for each phase to control the duty cycle of the associated switch.
Abstract:
In a current mode switching power supply, current through the inductor needs to be sensed to control the peak current. The inductor current includes a DC component and an AC component containing switching noise. To reduce the switching noise, the actual inductor current is sensed to generate a signal, and a first AC component is attenuated by a first RC circuit while not attenuating a first DC component. A second AC component is derived by applying the rectangular wave switch voltage, which is at the duty cycle of the regulator, to a second RC filter, which blocks a second DC component. The second AC component is much larger than the first AC component and does not contain switching noise. The large second AC component, the smaller “noisy” first AC component, and the first DC component are applied to the first RC circuit to create a low-noise inductor current signal.
Abstract:
In a current mode switching power supply, current through the inductor needs to be sensed to control the peak current. The inductor current includes a DC component and an AC component containing switching noise. To reduce the switching noise, the actual inductor current is sensed to generate a signal, and a first AC component is attenuated by a first RC circuit while not attenuating a first DC component. A second AC component is derived by applying the rectangular wave switch voltage, which is at the duty cycle of the regulator, to a second RC filter, which blocks a second DC component. The second AC component is much larger than the first AC component and does not contain switching noise. The large second AC component, the smaller “noisy” first AC component, and the first DC component are applied to the first RC circuit to create a low-noise inductor current signal.