摘要:
A method for the elimination of image speckles in a scanning laser projection is suggested, in which a phase hologram is used for dividing the illumination beam of the projector into partial beams. The partial beams are heterodyned again on the image screen within the image element (pixels) to be projected in such a way that differing speckle patterns are formed which average each other out in the eye of the viewer over time and/or space. Thus, a device is provided especially for the laser projection which substantially eliminates or reduces the speckles at the viewer. However, the beam form and the beam density are hardly or not changed.
摘要:
The invention relates to a method for measuring air turbulences with a lidar system, particularly on board aircraft during which a pulsed expanded laser beam (12) of a predetermined wavelength is emitted up to a spatial area and light backscattered from this spatial area is received. At a first point in time t1 and at a second point in time t2 after emitting a laser pulse (L), the intensity distribution in the cross-section of the backscattered light is measured, and an air turbulence in a measuring field defined by points in time t1 and t2 is determined from the comparison of both intensity distributions. Images of speckle patterns are recorded with the aid of cameras (21, 22). An evaluation unit (30) conducts a cross correlation in order to render the turbulence visible and to display it on a monitor (35).
摘要:
A display unit for an information processing system comprises a holographic image generating system. The information processing system may be a computer, television, telephone or other information system. The display may also be used in a large format, including a matrix of individual units, for sports arenas, road signs and the like.
摘要:
In an electronic image enhancement system, a reflex image is scanned in the interior of the eye. After modification by a processor, the image is projected back into the eye along the same path, and aligned in registration with the original scanned image. An elliptical scan pattern is used.
摘要:
In a method of producing video screen holograms, a real video screen is illuminated by means of a narrowband light for producing a hologram of the real video screen. A plurality of individual recordings is carried out, each covering only a partial area of the real video screen being imaged in the hologram. The individual recordings take place, for example, by means of a scanning pulsed laser beam. The individual recordings are assembled to form the video screen hologram of the entire video screen. A recording device for this purpose comprises a scanning device for guiding the light radiation over the video screen and a light source which generates pulsed light radiation. The light source is, for example, a laser system with a pulsed q-switched oscillator and with an optical parametric oscillator.
摘要:
An optical sensor device for recognizing optical irradiation and detecting its direction is constructed as a spherical-shell section from dielectric, optically transparent material. The irradiation penetrating into the spherical-shell section is reflected back and forth between the exterior and the interior surface or between a mirror and a thin shell via an air gap or vacuum gap, and is thus deflected to the shell edge. Since signals of different intensities are received at the irradiation detector at the beam edge according to the direction of incidence, the direction of incidence of the irradiation can be determined from the relationship of the signals.
摘要:
A method and system are described for the detection and imaging of objects and structures in scattering media using light radiation. The medium is scanned with a strongly collimated light beam (2). The light power (P.sub.b) scattered backward from the medium is detected by a receiver (17) and plotted along the scanning path. Objects (4) buried in the medium (9) are detected by the differential variation of the received light power. Information as to the size, location and depth of the objects can be obtained. The illumination by strongly collimated laser light at one or several wavelengths is preferred.
摘要:
The invention relates to a method for measuring air turbulences with a lidar system, particularly on board aircraft during which a pulsed expanded laser beam (12) of a predetermined wavelength is emitted up to a spatial area and light backscattered from this spatial area is received. At a first point in time t1 and at a second point in time t2 after emitting a laser pulse (L), the intensity distribution in the cross-section of the backscattered light is measured, and an air turbulence in a measuring field defined by points in time t1 and t2 is determined from the comparison of both intensity distributions. Images of speckle patterns are recorded with the aid of cameras (21, 22). An evaluation unit (30) conducts a cross correlation in order to render the turbulence visible and to display it on a monitor (35).
摘要:
In the case of a method of detecting wind velocities by means of a Doppler-lidar system (10), a laser beam of a defined frequency generated by means of a laser (11) is emitted by a transmitting device (12) toward a space area and the light backscattered from the space area is received by means of a receiving telescope (13). For determining a Doppler shift, an interferogram is generated by means of an interferometer (16), the intensity distribution of the interferogram being directly measured by means of a photodetector (17). The measured intensity distribution is compared with one or more reference patterns which had previously been determined for defined parameters and are filed in a memory device (18a). From the comparison, the Doppler shift is determined as a measurement for the wind velocity. The Doppler-lidar system (10) comprises an analyzing unit (18a, 18b) for implementing the method, having a comparison unit (18b) for the comparison of reference patterns with the measured interferogram.
摘要:
In the case of a method of detecting wind velocities by means of a Doppler-lidar system (10), a laser beam of a defined frequency generated by means of a laser (11) is emitted by a transmitting device (12) toward a space area and the light backscattered from the space area is received by means of a receiving telescope (13). For determining a Doppler shift, an interferogram is generated by means of an interferometer (16), the intensity distribution of the interferogram being directly measured by means of a photodetector (17). The measured intensity distribution is compared with one or more reference patterns which had previously been determined for defined parameters and are filed in a memory device (18a). From the comparison, the Doppler shift is determined as a measurement for the wind velocity. The Doppler-lidar system (10) comprises an analyzing unit (18a, 18b) for implementing the method, having a comparison unit (18b) for the comparison of reference patterns with the measured interferogram.