Abstract:
A middle phase power-fetching type phase front/phase tail synchronized modulation circuit, comprising: a power supply unit, that is used to fetch power from the middle phase of an ordinary AC voltage waveform, and supplies it to a phase front/phase tail modulation unit as a normal operating voltage after rectification; and a phase front/phase tail modulation unit, it includes an MCU microcomputer, to control a driving circuit to turn-on, and control synchronously at least two bi-directional electronic power element, to generate a phase front/phase tail turn-on modulation signal. As such, while performing synchronous modulation from phase middle, phase front/phase tail can be retracted inward or expanded outward at the same time, so that phase front/phase tail turn-on output voltage average values complement each other, hereby achieving stable and modulated power supply.
Abstract:
A single fire-wire bi-directional power fetching and dimmer control system, comprising: a dimmer circuit, that includes at least a dimmer driver and two connected bi-directional power electronic components; a single fire-wire bi-directional power fetching module, connected in series between the two bi-directional power electronic components, to perform single fire-wire power fetching when the dimmer circuit is conducting; a high side buck, connected in parallel to the dimmer circuit; and a DC to DC converter, with input end of the converter used for fetching power connected to the single fire-wire bi-directional power fetching module, and the high side buck; and with output end of the converter used for supplying power connected to the dimmer driver of the dimmer circuit. As such, single fire-wire bi-directional dimming can be performed, to raise significantly its range of control, while fetching enough power to drive Wi-Fi and 5G communication.
Abstract:
A single fire-wire phase-front dynamic AC power fetching module, comprising: two series-connected type synchronous power fetching circuits connected in parallel, and an electronic switch connected thereto, one series-connected type synchronous power fetching circuit is used to perform positive phase AC power fetching, while the other series-connected type synchronous power fetching circuit is used to perform negative phase AC power fetching. The electronic switch is formed by a relay or a silicon control crystal (TRIAC) controlled by an MCU microprocessor. As such, through adopting bi-directional dynamic full-bridge type power fetching, for a single fire wire, it is able to perform power fetching twice in a cycle. The duration of power fetching can be regulated automatically depending on the load, to compensate for the power, and supply it to an outside circuit as the basic power supply.
Abstract:
A middle phase power-fetching type phase front/phase tail synchronized modulation circuit, comprising: a power supply unit, that is used to fetch power from the middle phase of an ordinary AC voltage waveform, and supplies it to a phase front/phase tail modulation unit as a normal operating voltage after rectification; and a phase front/phase tail modulation unit, it includes an MCU microcomputer, to control a driving circuit to turn-on, and control synchronously at least two bi-directional electronic power element, to generate a phase front/phase tail turn-on modulation signal. As such, while performing synchronous modulation from phase middle, phase front/phase tail can be retracted inward or expanded outward at the same time, so that phase front/phase tail turn-on output voltage average values complement each other, hereby achieving stable and modulated power supply.