Abstract:
This disclosure relates to refrigerant compressors, and, in particular, relates to cooling for the power electronics of such compressors. An example refrigerant system includes a main refrigerant loop in communication with a condenser, an evaporator, and a compressor. The refrigerant system further includes at least one cooling line configured to direct refrigerant from the main refrigerant loop to cool a chamber containing electronic components. A method is also disclosed.
Abstract:
A motor control system includes a motor switching assembly comprising a power converter positioned on a converter path, a first relay positioned on the converter path upstream of the power converter, a second relay positioned on a bypass path that is in parallel with the converter path, and a solid-state switching unit positioned upstream from the converter path and the bypass path. The motor control system also includes a control system that controls operation of the motor switching assembly, with the control system programmed to operate the solid-state switching unit in one of a conducting mode, a non-conducting mode, and a ramping mode, so as to selectively control and condition power flow therethrough. The control system is also programmed to control switching of the first and second relays between open and closed positions to selectively route power along the converter path or the bypass path.
Abstract:
A power conversion device, mounted on a motor vehicle, has a battery, a power converter, a reactor and a control unit. The power conversion device boosts a battery voltage of the battery, and supplies a boosted voltage to a motor generator mounted on a motor vehicle. The power conversion device transmits electric power generated by the motor generator and supplies the generated electric power to the battery through the power converter. The power converter has an upper arm and a lower arm. The upper arm has upper arm side switching elements. The lower arm has lower arm side switching elements which are directly connected to the respective upper arm side switching elements. At least one of the upper arm side switching elements is composed of a MOS FET and at least one of the lower arm side switching elements is composed of an IGBT.
Abstract:
A control method for verifying the compatibility between an input filter and a variable speed drive. The method includes applying a plurality of successive commands so as to define a plurality of operating points of the electric motor, for each operating point, measuring the DC voltage of the bus, comparing the maximum variation in the amplitude of the DC voltage measured for the operating point with a threshold value, defining a new operating point as long as the maximum variation in the amplitude of the DC voltage is lower than the threshold value, determining an operating range including all of the operating points for which the maximum variation in the amplitude of the DC voltage is lower than the threshold value.
Abstract:
Systems and techniques detecting a reverse current are disclosed. An apparatus comprises a switching circuit coupled to a load and a reference node. The switching circuit may be capable of conducting a reverse current from the reference node to the load when a voltage at the load is lower than a voltage at the reference node. A voltage source has a first terminal coupled to the load, a second terminal configured to follow a voltage at the load, and produces a voltage proportional to a voltage drop across the switching circuit. A comparator circuit is coupled to compare a voltage at the second terminal of the voltage source to the voltage at the reference node and configured to indicate when the reverse current has a magnitude greater than a predetermined threshold.
Abstract:
Systems and methods for controlling potentially damaging inrushes of current to the capacitor bank of an electric drive system when the voltage on the capacitor bank is low. In one embodiment, a variable speed drive has a converter that converts AC power to DC power, a capacitor bank that receives the DC power, and an inverter that converts the DC power stored by the capacitor bank to AC output power. The converter has three sections that rectify the phases of three-phase input power. Each section has at least one controlled rectifier component, and the rectifier components have switches connected to them in parallel. When the voltage on the capacitor bank is low, the controlled rectifiers and switches are controlled to prevent dangerously high inrushes of current to the capacitor bank.
Abstract:
A motor control apparatus includes: a PWM rectifier; an inverter; a detection unit for detecting an AC voltage value of the PWM rectifier; a calculation unit for calculating a power supply voltage phase; a detection unit for detecting an AC current value of the PWM rectifier; a current loop control unit for generating an AC voltage command to control a power conversion operation of the PWM rectifier; a current loop saturation state determination unit for determining to be in a current loop saturation state when a magnitude of the AC voltage command is equal to or larger than a predetermined voltage prescribed value; an operation determination unit for determining whether the PWM rectifier is in a powering operation or in a regenerative operation and a power failure determination unit for determining a presence or absence of a power failure at the AC power supply side from the determination results.
Abstract:
A softstarter for starting and stopping an asynchronous motor having three phases, including two pairs of semiconductor devices of the type turning off at zero-crossing of the current therethrough, wherein each of the two pairs of semiconductor devices is connected in anti-parallel, and the first pair of the semiconductor devices is adapted to control the voltage of one of the phases of the motor and the second pair of the semiconductor devices being adapted to control the voltage of another of the phases of the motor, a DC reducing unit associated with the two pairs of semiconductor devices, a first voltage measuring unit for measuring voltages across the two pairs of semiconductor devices, and a first zero-crossing detecting unit configured for detecting zero-crossings of the measured voltages across the two pairs of semiconductor devices and providing zero-crossing signals to the DC reducing unit.
Abstract:
Systems, methods, and devices are disclosed, including an induction-motor controller having a phase path; a solid-state switch interposed on the phase path; and a controller coupled to the solid-state switch. In certain embodiments, the controller is configured to switch the solid-state switch so that the solid-state switch is conductive during a conduction angle of a cycle of an incoming AC power waveform conveyed by the phase path, calculate the conduction angle based on a generally sinusoidal reference value that has a frequency lower than a frequency of the incoming AC power waveform, and adjust the generally sinusoidal reference value based on a value indicative of flux in a load coupled to the phase path.
Abstract:
A modular power distribution system comprises a chassis; and a backplane including a power input, and a plurality of module connection locations. A plurality of modules are mounted in the chassis, each module mounted to one of the module connection locations. Each module includes: (i) an OR-ing diode; (ii) a circuit protection device; (iii) a microprocessor controlling the circuit protection device; and (iv) a power output connection location. A circuit option switch is located on each module for setting the current limits for each module. A control module is provided connected to the backplane.