摘要:
The various embodiments of the present disclosure relate generally to nanogels for the cellular delivery of therapeutics and methods of using the same. More particularly, the various embodiments of the present invention are directed to systems and methods for the targeted treatment of neoplastic using nanogel-based technologies. In an embodiment of the present invention, a nanogel-based delivery system comprises: a nanogel comprising a crosslinked polymer particle; and an active agent contained substantially within the nanogel, wherein the active agent is non-covalently associated with the nanogel.
摘要:
The various embodiments of the present disclosure relate generally to nanogels for the cellular delivery of therapeutics and methods of using the same. More particularly, the various embodiments of the present invention are directed to systems and methods for the targeted treatment of neoplastic using nanogel-based technologies. In an embodiment of the present invention, a nanogel-based delivery system comprises: a nanogel comprising a crosslinked polymer particle; and an active agent contained substantially within the nanogel, wherein the active agent is non-covalently associated with the nanogel.
摘要:
An immortalized hemangiosarcoma cell line of malignant canine endothelial cells which possesses surface expression characteristics and growth factor and cytokine expression profiles typical of nonmalignant activated endothelial cells is provided. In vitro and in vivo models for angiogenesis produced from this cell line as well as methods for identifying antiangiogenic agents using these models are also provided.
摘要:
Methods and devices for selectively removing from a subject a target cell, pathogen, or virus expressing a binding partner on its surface are presented. In one embodiment, the device contains an excorporeal circuit, which includes, at least, a magnetic filter comprising a magnet and a removable, magnetizable substrate capable of capturing magnetic nanomaterials; and a pump in fluid communication with the magnetic filter, wherein the pump moves fluid through the excorporeal circuit. The magnet is capable of generating a magnetic field sufficient to capture magnetic nanomaterials in the magnetic field. In a preferred embodiment, the target cells are cancer cells and/or cells infected with pathogenic agents. The devices may be designed for extracorporeal or in vivo uses. Functionalized superparamagnetic nanoparticles are either mixed ex vivo with a biological fluid from the patient or injected into the patient. Then the biological fluid, which includes the nanoparticles is transported to the magnetic filter to remove any nanoparticles that are complexed to the target cells, pathogens, or virus, and any free nanoparticles. Optionally, the functionalized nanoparticles contain and deliver a therapeutic agent. In one embodiment, the therapeutic agent is released when the nanoparticle binds to the target cells, pathogens, or virus.