Abstract:
Methods and systems for monolithic integration of photonics and electronics in CMOS processes are disclosed and may include in an optoelectronic transceiver comprising photonic and electronic devices from two complementary metal-oxide semiconductor (CMOS) die with different silicon layer thicknesses for the photonic and electronic devices, the CMOS die bonded together by metal contacts: communicating optical signals and electronic signals to and from said optoelectronic transceiver utilizing a received continuous wave optical signal as a source signal. A first of the CMOS die includes the photonic devices and a second includes the electronic devices. Electrical signals may be communicated between electrical devices to the optical devices utilizing through-silicon vias coupled to the metal contacts. The metal contacts may include back-end metals from a CMOS process. The electronic and photonic devices may be fabricated on SOI wafers, with the SOI wafers being diced to form the CMOS die.
Abstract:
Methods and systems for monolithic integration of photonics and electronics in CMOS processes are disclosed and may include fabricating photonic and electronic devices on two CMOS wafers with different silicon layer thicknesses. The devices may be fabricated on semiconductor-on-insulator (SOI) wafers utilizing a bulk CMOS process and/or on a SOI wafer utilizing a SOI CMOS process. The different thicknesses may be fabricated utilizing a double SOI process and/or a selective area growth process. Cladding layers may be fabricated utilizing one or more oxygen implants and/or utilizing CMOS trench oxide on the CMOS wafer. Silicon may be deposited on the CMOS trench oxide utilizing epitaxial lateral overgrowth. Cladding layers may be fabricated utilizing selective backside etching. Reflective surfaces may be fabricated by depositing metal on the selectively etched regions. Silicon dioxide or silicon germanium integrated in the CMOS wafer may be utilized as an etch stop layer.
Abstract:
Methods and systems for monolithic integration of photonics and electronics in CMOS processes are disclosed and may include in an optoelectronic transceiver comprising photonic and electronic devices from two complementary metal-oxide semiconductor (CMOS) die with different silicon layer thicknesses for the photonic and electronic devices, the CMOS die bonded together by metal contacts: communicating optical signals and electronic signals to and from said optoelectronic transceiver utilizing a received continuous wave optical signal as a source signal. A first of the CMOS die includes the photonic devices and a second includes the electronic devices. Electrical signals may be communicated between electrical devices to the optical devices utilizing through-silicon vias coupled to the metal contacts. The metal contacts may include back-end metals from a CMOS process. The electronic and photonic devices may be fabricated on SOI wafers, with the SOI wafers being diced to form the CMOS die.