Abstract:
A power tool includes a spindle, a housing, a cover body configured to be removably mounted to the housing, a first engagement part provided on or in the cover body, and a second engagement part provided on or in the housing. The cover body includes an upper plate part and an outer peripheral part. The second engagement part is movable between an engagement position and a disengagement position. The first and second engagement parts are configured to restrict rotation of the cover body around the drive axis relative to the housing by engaging with each other. The first engagement part is (i) at a same location as or radially outward of the outer peripheral part of the cover body in a radial direction orthogonal to the drive axis, and (ii) between an upper end and a lower end of the cover body in the up-down direction.
Abstract:
A power tool, such as a grinder, includes a motor housing that houses a motor. A grip housing extends in a longitudinal direction of the power tool and has a first longitudinal end coupled to the motor housing, first and second battery-mount parts formed at a second longitudinal end, and a grip part disposed between the first and second longitudinal ends. First and second battery packs are respectively mountable on the first and second battery-mount parts, and the grip housing comprises an upper housing half joined to a lower housing half.
Abstract:
A grinder includes a motor, a housing, a spindle and a cover. The spindle protrudes downward from the housing, is driven by the motor, and thereby rotates. The cover is provided on the spindle in the circumferential direction and at least partially covers a tool accessory, which is mounted on the spindle. The cover is configured such that at least one part deforms and/or is composed of an elastic material.
Abstract:
An electric tool, such as an angle driver, has a main tool body with a front portion and a rear portion positioned opposite to the front portion. The main tool body houses a motor configured to receive electricity to function as a drive source. A gear head is coupled with the front portion of the main tool body wherein the gear head has a spindle in communication with a motor axis of the motor via mesh-engagement of bevel gears associated with the motor axis. The spindle has with a cutter tool accessory attached thereto such that rotation of the motor axis produces a commensurate rotation of the cutter tool accessory. Battery attachment portions are associated with the rear portion of the main tool body and are configured to receive a corresponding set of batteries that provide electricity to power the motor.
Abstract:
An electric work machine includes: a motor having a stator disposed around a rotor; a stator-holding member, which holds the stator; one or more bearings, which rotatably support(s) the rotor; and one or more bearing-retaining members, which is (are) supported by the stator-holding member in an immovable manner in the radial direction, retain(s) the bearing(s), and is (are) made of a metal. The stator-holding member is made of a material that exhibits a water-absorption coefficient of 1.5 wt % or less at equilibrium in an ambient atmosphere at a temperature of 23° C. and a relative humidity of 50%.
Abstract:
A power tool includes a brushless motor having a stator and a rotor, which includes a rotary shaft extending in a front-rear direction of the power tool. The rotary shaft rotates a spindle that extends in an up-down direction of the power tool. A fan is fixedly coupled to the rotary shaft and rotates therewith. A switch is disposed rearward of the brushless motor and a controller is disposed rearward of the switch in the front-rear direction. A battery pack is disposed rearward of the controller. A main-body housing houses the brushless motor, the switch and the controller. The main-body housing includes a first tubular part, which houses the brushless motor, and a second tubular part, which houses the switch. The diameter of the second tubular part is smaller than the diameter of the first tubular part.
Abstract:
A disc grinder includes a tool main body that may include, for example, as from the front side, a drive portion, a handle portion, and a battery attachment portion. A rechargeable battery may be attached to the battery attachment portion through sliding. A brushless DC motor rotationally drives a motor shaft by electric power from the rechargeable battery. A reduction gear unit may reduce in speed the rotational drive of the motor shaft and may transmit the rotational drive to an output shaft to which a grinding wheel is mounted. The brushless DC motor and a reduction gear of the reduction gear unit may be arranged such that the rotational axis of the motor shaft and the rotational axis of the output shaft are parallel to each other.
Abstract:
A rechargeable grinder includes a brushless motor, a main body housing configured to accommodate the brushless motor, a main switch and a micro switch configured to distribute power to the brushless motor, and a switch lever capable of moving with respect to the main switch and the micro switch, wherein a lock off lever capable of operating the micro switch in association with movement of the switch lever toward a switch is provided so as to be movable between a lock release position in which the micro switch can be operated and a lock position in which the micro switch cannot be operated.
Abstract:
A power tool includes a clamp shaft for clamping a tool accessory to the power tool and a clamp shaft holding mechanism for selectively locking the clamp shaft to hold the clamp shaft in a position that secures the tool accessory on the power tool. The power tool also includes a lever for shifting the clamp shaft holding mechanism between clamped and unclamped states. The lever is configured such that when an operator grasps the lever and moves it toward a position for releasing the tool accessory, the lever and the operator's hand move away from the tool accessory.
Abstract:
A grinder according to one aspect of the present disclosure includes a motor, a housing for housing the motor, a spindle protruding from the housing and configured to be driven to be rotated by the motor, a wheel cover configured to cover a part of a tip end tool attached to the spindle, a detector configured to detect the wheel cover, and a controller configured to stop or restrict the spindle being driven by the motor in response to non-detection of the wheel cover by the detector.