Self-Calibrating Analyte Sensor
    1.
    发明申请

    公开(公告)号:US20220082525A1

    公开(公告)日:2022-03-17

    申请号:US17470748

    申请日:2021-09-09

    摘要: A sensor device comprises at least one transducer and a sensing material disposed on the transducer. The sensing material adsorbs or absorbs an amount of analyte (e.g., a target gas) that depends on a temperature of the sensing material and a concentration of the analyte. At least one detector is arranged to measure responses of the transducer to sorption or desorption of the analyte in the sensing material while the sensing material is heated and/or cooled according to at least one temperature profile. The device also comprises a humidity sensor that is arranged to detect a humidity level of the environment or sample containing the analyte. A processor or controller is programmed to determine the quantity (e.g., concentration) of the analyte by comparing values of the transducer measurement signals to reference data indicative of expected or pre-measured responses of the transducer to known concentrations of the analyte at the same humidity level as indicated by the humidity sensor while the sensing material is subjected to the same or similar temperature profile.

    Gas sensor incorporating a temperature-controlled sensing material

    公开(公告)号:US10605778B2

    公开(公告)日:2020-03-31

    申请号:US16118159

    申请日:2018-08-30

    摘要: A gas sensor comprises at least one transducer and a sensing material (e.g., a metal-organic framework) disposed on the transducer. The sensing material has a temperature-dependent gas sorption behavior. A detector is arranged to detect responses of the transducer to sorption and/or desorption of a target gas in the sensing material and to output transducer measurement signals indicative of the transducer responses. At least one thermal element changes the temperature of the sensing material by heating and/or cooling, and at least one temperature sensor (which may be integral with the thermal element) is arranged to measure a temperature of the sensing material. At least one processor determines the quantity (e.g., concentration, partial pressure, or mass) of the target gas according to the temperature of the sensing material at which the transducer measurement signals satisfy a signal value condition.

    DEVICE AND METHOD FOR PRODUCING COATINGS OF POROUS COORDINATION POLYMERS BY FLOW OF REAGENTS

    公开(公告)号:US20170173623A1

    公开(公告)日:2017-06-22

    申请号:US15383548

    申请日:2016-12-19

    CPC分类号: B01J20/226

    摘要: An apparatus and method is provided for coating a surface of a material with at least one film of porous coordination polymer. A body (e.g., a flow cell) has an interior space for holding the material to be coated, at least one inlet, and at least one outlet in communication with the interior space to permit fluid to flow in a downstream direction from the inlet, across the surface of the material in the interior space, and through the outlet. A plurality of flow channels are arranged to flow a plurality of different reagent solutions from respective supply sources to the at least one inlet. The flow channels merge into at least one mixing region, positioned upstream of the interior space, to mix the solutions prior to the mixture contacting the surface of the material in the interior space. At least one pressure source and valve system are arranged with the supply sources and the flow channels to select at least one combination of the reagent solutions to be mixed and to force the selected reagent solutions to flow from their respective supply sources, through the flow channels, and into the mixing region at independently controllable flow rates to regulate respective concentrations of reagents in the mixture.

    Gas sensor with humidity correction

    公开(公告)号:US10436737B2

    公开(公告)日:2019-10-08

    申请号:US15872999

    申请日:2018-01-17

    摘要: A device and method are provided for detecting analyte with correction for the effects of humidity. The device comprises a resonant sensor having an oscillating portion. A capacitor is positioned on the oscillating portion. The capacitor is formed by at least two electrodes and a sensing material positioned between the electrodes. A readout circuit is arranged to measure a response of the oscillating portion (e.g., frequency shift or change in resonance frequency, stiffness or strain) and a capacitance of the capacitor when substances are adsorbed or absorbed in the sensing material. This combination of measurements enables the device to distinguish between various types of adsorbed or absorbed molecules, especially distinguishing between an analyte of interest and water molecules that might interfere with the detection of the analyte. A processor determines an analyte value indicative of the presence, amount or concentration of the analyte in dependence upon measurements of both the response of the oscillating portion and the capacitance to account for the effects of water in the sensing material.