Abstract:
A wireless communication apparatus includes a channel estimation circuit, a beamforming control circuit, and a transmit (TX) circuit. The channel estimation circuit estimates a channel between the wireless communication apparatus and another wireless communication apparatus during at least one first time slot. The beamforming control circuit determines beamforming coefficients according to the estimated channel. The TX circuit applies the beamforming coefficients to transmission of an output data during at least one second time slot later than the at least one first time slot. During the at least one second time slot, the output data is transmitted to another wireless communication apparatus via multiple antennae. The wireless communication apparatus performs communications according to a normal frequency hopping sequence in compliance with a communication specification.
Abstract:
Methods for preventing coexistence interference between a Bluetooth Low Energy (BLE) radio and a collocated LTE radio are provided. In a first solution, the BLE radio adds padding bytes to BLE packets such that the total packet length falls in a specific range to prevent coexistence interference. In a second solution, the BLE radio limits the total BLE packet length to a predefined length to prevent coexistence interference. In a third solution, the data rate for transmitting the BLE packets is higher than a predefined rate to prevent coexistence interference. In a fourth solution, the BLE radio dynamically adjusts the time inter-frame-spacing (T_IFS) value to prevent coexistence interference with the collocated LTE radio.
Abstract:
A wireless communication apparatus includes a channel estimation circuit, a beamforming control circuit, and a transmit (TX) circuit. The channel estimation circuit estimates a channel between the wireless communication apparatus and another wireless communication apparatus during at least one first time slot. The beamforming control circuit determines beamforming coefficients according to the estimated channel. The TX circuit applies the beamforming coefficients to transmission of an output data during at least one second time slot later than the at least one first time slot. During the at least one second time slot, the output data is transmitted to another wireless communication apparatus via multiple antennae. The wireless communication apparatus performs communications according to a normal frequency hopping sequence in compliance with a communication specification.
Abstract:
A method and apparatus for performing wake-up control are provided, where the method is applied to an electronic device, and the method may include the steps of: detecting whether a predetermined wake-up action is input into the electronic device, wherein the predetermined wake-up action is a user action for wake-up control; and when it is detected that the predetermined wake-up action is input into the electronic device, sending a wake-up packet carrying predetermined wake-up information to allow an internal circuit of another electronic device to be woken up in response to detection of the predetermined wake-up information.
Abstract:
Methods for preventing coexistence interference between a Bluetooth Low Energy (BLE) radio and a collocated LTE radio are provided. In a first solution, the BLE radio adds padding bytes to BLE packets such that the total packet length falls in a specific range to prevent coexistence interference. In a second solution, the BLE radio limits the total BLE packet length to a predefined length to prevent coexistence interference. In a third solution, the data rate for transmitting the BLE packets is higher than a predefined rate to prevent coexistence interference. In a fourth solution, the BLE radio dynamically adjusts the time inter-frame-spacing (T_IFS) value to prevent coexistence interference with the collocated LTE radio.
Abstract:
Methods for preventing coexistence interference between a Bluetooth Low Energy (BLE) radio and a collocated LTE radio are provided. In a first solution, the BLE radio adds padding bytes to BLE packets such that the total packet length falls in a specific range to prevent coexistence interference. In a second solution, the BLE radio limits the total BLE packet length to a predefined length to prevent coexistence interference. In a third solution, the data rate for transmitting the BLE packets is higher than a predefined rate to prevent coexistence interference. In a fourth solution, the BLE radio dynamically adjusts the time inter-frame-spacing (T_IFS) value to prevent coexistence interference with the collocated LTE radio.
Abstract:
A method and apparatus for performing wake-up control are provided, where the method is applied to an electronic device, and the method may include the steps of: detecting whether a predetermined wake-up action is input into the electronic device, wherein the predetermined wake-up action is a user action for wake-up control; and when it is detected that the predetermined wake-up action is input into the electronic device, sending a wake-up packet carrying predetermined wake-up information to allow an internal circuit of another electronic device to be woken up in response to detection of the predetermined wake-up information.
Abstract:
Methods for preventing coexistence interference between a Bluetooth Low Energy (BLE) radio and a collocated LTE radio are provided. In a first solution, the BLE radio adds padding bytes to BLE packets such that the total packet length falls in a specific range to prevent coexistence interference. In a second solution, the BLE radio limits the total BLE packet length to a predefined length to prevent coexistence interference. In a third solution, the data rate for transmitting the BLE packets is higher than a predefined rate to prevent coexistence interference. In a fourth solution, the BLE radio dynamically adjusts the time inter-frame-spacing (T_IFS) value to prevent coexistence interference with the collocated LTE radio.