Variable width superblock addressing

    公开(公告)号:US11740819B2

    公开(公告)日:2023-08-29

    申请号:US17486420

    申请日:2021-09-27

    Abstract: Devices and techniques for variable width superblock addressing are described herein. A superblock width, specified in number of planes, is obtained. A superblock entry is created in a translation table of a NAND device. Here, the superblock entry may include a set of blocks, from the NAND device, that have the same block indexes across multiple die of the NAND device. The number of unique block indexes are equal to the number of planes and in different planes. A request, received from a requesting entity, is performed using the superblock entry. Performing the request includes providing a single instruction to multiple die of the NAND device and multiple data segments. Here, a data segment corresponds to a block in the set of blocks specified by a tuple of block index and die. A result of the request is then returned to the requesting entity.

    Synchronizing NAND logical-to-physical table region tracking

    公开(公告)号:US11341041B2

    公开(公告)日:2022-05-24

    申请号:US16940015

    申请日:2020-07-27

    Abstract: Devices and techniques for synchronizing NAND logical-to-physical table region tracking are described herein. Table region data structures for physical blocks are maintained. These structures include logical-to-physical (L2P) mapping table portions that point to the respective physical blocks. When garbage collection is performed on a block, table region structures for that block, and another (e.g., the next block to be garbage collected) are read to avoid loading L2P table regions that do not point to the block. If any of the read portions of the L2P table region fail to point to either the block or the other block, these L2P table portions are removed from the loaded table region data structures.

    Variable width superblock addressing

    公开(公告)号:US11132136B2

    公开(公告)日:2021-09-28

    申请号:US16077175

    申请日:2017-12-13

    Abstract: Devices and techniques for variable width superblock addressing are described herein. A superblock width, specified in number of planes, is obtained. A superblock entry is created in a translation table of a NAND device. Here, the superblock entry may include a set of blocks, from the NAND device, that have the same block indexes across multiple die of the NAND device. The number of unique block indexes are equal to the number of planes and in different planes. A request, received from a requesting entity, is performed using the superblock entry. Performing the request includes providing a single instruction to multiple die of the NAND device and multiple data segments. Here, a data segment corresponds to a block in the set of blocks specified by a tuple of block index and die. A result of the request is then returned to the requesting entity.

    Synchronizing NAND logical-to-physical table region tracking

    公开(公告)号:US10725904B2

    公开(公告)日:2020-07-28

    申请号:US16075543

    申请日:2017-12-13

    Abstract: Devices and techniques for synchronizing NAND logical-to-physical table region tracking are described herein. Table region data structures for physical blocks are maintained. These structures include logical-to-physical (L2P) mapping table portions that point to the respective physical blocks. When garbage collection is performed on a block, table region structures for that block, and another (e.g., the next block to be garbage collected) are read to avoid loading L2P table regions that do not point to the block. If any of the read portions of the L2P table region fail to point to either the block or the other block, these L2P table portions are removed from the loaded table region data structures.

    VARIABLE WIDTH SUPERBLOCK ADDRESSING

    公开(公告)号:US20210181940A1

    公开(公告)日:2021-06-17

    申请号:US16077175

    申请日:2017-12-13

    Abstract: Devices and techniques for variable width superblock addressing are described herein. A superblock width, specified in number of planes, is obtained. A superblock entry is created in a translation table of a NAND device. Here, the superblock entry may include a set of blocks, from the NAND device, that have the same block indexes across multiple die of the NAND device. The number of unique block indexes are equal to the number of planes and in different planes. A request, received from a requesting entity, is performed using the superblock entry. Performing the request includes providing a single instruction to multiple die of the NAND device and multiple data segments. Here, a data segment corresponds to a block in the set of blocks specified by a tuple of block index and die. A result of the request is then returned to the requesting entity.

    VARIABLE WIDTH SUPERBLOCK ADDRESSING

    公开(公告)号:US20220011936A1

    公开(公告)日:2022-01-13

    申请号:US17486420

    申请日:2021-09-27

    Abstract: Devices and techniques for variable width superblock addressing are described herein. A superblock width, specified in number of planes, is obtained. A superblock entry is created in a translation table of a NAND device. Here, the superblock entry may include a set of blocks, from the NAND device, that have the same block indexes across multiple die of the NAND device. The number of unique block indexes are equal to the number of planes and in different planes. A request, received from a requesting entityp, is performed using the superblock entry. Performing the request includes providing a single instruction to multiple die of the NAND device and multiple data segments. Here, a data segment corresponds to a block in the set of blocks specified by a tuple of block index and die. A result of the request is then returned to the requesting entity.

    SYNCHRONIZING NAND LOGICAL-TO-PHYSICAL TABLE REGION TRACKING

    公开(公告)号:US20200142821A1

    公开(公告)日:2020-05-07

    申请号:US16075543

    申请日:2017-12-13

    Abstract: Devices and techniques for synchronizing NAND logical-to-physical table region tracking are described herein. Table region data structures for physical blocks are maintained. These structures include logical-to-physical (L2P) mapping table portions that point to the respective physical blocks. When garbage collection is performed on a block, table region structures for that block, and another (e.g., the next block to be garbage collected) are read to avoid loading L2P table regions that do not point to the block. If any of the read portions of the L2P table region fail to point to either the block or the other block, these L2P table portions are removed from the loaded table region data structures.

Patent Agency Ranking