Abstract:
A power supply apparatus for applying a method of supplying a loading with an electric power within a predetermined range of a default power, which includes a driving unit, a voltage sensing unit, and a feedback control unit. The driving unit receives power from a power source, and supplies the loading with a working voltage and a working current; the voltage sensing unit detects the working voltage; the feedback control unit keeps a plurality of reference voltages, wherein each two neighboring reference voltages are defined to have a voltage section therebetween. The feedback control unit sends a current signal to the driving unit according to the working voltage and a slope parameter of the voltage section which the working voltage falls in, and the driving unit supplies the working current according to the current signal to maintain the electric power in the predetermined range of the default power.
Abstract:
A compensation control circuit is provided, which may be connected to a converter to compensate its error. The compensation control circuit may include a compensation control module, a control module and a modulation module. The compensation control module may include a compensation control port, and the compensation control module can receive a compensation database via the compensation control port and then output a compensation signal corresponding to the compensation database. The compensation database can be created by pre-measurement, which may include the compensation signal corresponding to the error that will occur on the converter under a specific input power signal. The control module can output a control signal according to the compensation signal. The modulation module can modulate the control signal into a modulation signal and output the modulation signal to the converter so as to control the output signal of the converter.
Abstract:
A switch includes a first switching member and a latch circuit. A first terminal of the first switching member is electrically connected to a power source, while a second terminal thereof is electrically connected to a loading. The latch circuit includes a first transistor and a second transistor which are mutually electrically connected. The first transistor is electrically connected to the first terminal, and the second transistor is electrically connected to the control terminal. By inputting a trigger voltage to the second transistor, the second transistor and the first switching member are conducted, which makes the first transistor become conductive. After the first transistor becoming conductive, the first transistor provides electricity to the second transistor to cause latching effect, and to consequently keep the first switching member conductive.
Abstract:
A method of driving a LED chip includes the following steps: generate a reference voltage, and accordingly control a driving unit to output electrical energy at a power corresponding to the strength of the reference voltage; obtain an operating current required by the LED chip; control the driving unit to output the operating current to the LED chip under the power corresponding to the reference voltage. Whereby, with different strengths of the reference voltage, the driving unit is capable of outputting electrical energy to the LED chip at different powers. Therefore, one single driving apparatus applied with the method is sufficient to replace multiple conventional driving apparatuses for LED chips.