Abstract:
The displacement detector is configured to receive a transmission signal output from a transmission signal output unit by a reception electrode disposed in a detection head to detect a displacement between the detection head and a scale based on the received signal. The transmission signal is transmitted from a transmission electrode disposed in the detection head to the reception electrode through a coupling electrode disposed in the scale. Phase adjustment units generates a signal whose phase is adjusted from the transmission signal output from the transmission signal output unit. An amplitude adjustment unit adjusts an amplitude of the signal whose phase is adjusted by the phase adjustment unit to generate a crosstalk correction signal. A demodulation unit samples a signal generated by synthesizing the crosstalk correction signal and the received signal and to demodulate the sampled signal.
Abstract:
An object is to respectively excite transmission coils with different voltages using a single power supply with low power consumption in an electromagnetic induction type encoder. A detection head of an encoder includes a voltage adjustment circuit and a plurality of excitation circuits. The excitation circuit includes a resonant circuit that includes a driving capacitor and a transmission coil connected in series and generates an alternate-current magnetic field inducing currents in scale coils disposed in a plurality of scale tracks on a scale by connecting both ends of the resonant circuit in a state in which the driving capacitor is charged. The voltage adjustment circuit includes a first transformer capacitor and controls a charging voltage of the driving capacitor in a single excitation circuit using the charged first transformer capacitor.
Abstract:
An object is to respectively excite transmission coils with different voltages using a single power supply with low power consumption in an electromagnetic induction type encoder. A detection head of an encoder includes a voltage adjustment circuit and a plurality of excitation circuits. The excitation circuit includes a resonant circuit that includes a driving capacitor and a transmission coil connected in series and generates an alternate-current magnetic field inducing currents in scale coils disposed in a plurality of scale tracks on a scale by connecting both ends of the resonant circuit in a state in which the driving capacitor is charged. The voltage adjustment circuit includes a first transformer capacitor and controls a charging voltage of the driving capacitor in a single excitation circuit using the charged first transformer capacitor.
Abstract:
The displacement detector is configured to receive a transmission signal output from a transmission signal output unit by a reception electrode disposed in a detection head to detect a displacement between the detection head and a scale based on the received signal. The transmission signal is transmitted from a transmission electrode disposed in the detection head to the reception electrode through a coupling electrode disposed in the scale. Phase adjustment units generates a signal whose phase is adjusted from the transmission signal output from the transmission signal output unit. An amplitude adjustment unit adjusts an amplitude of the signal whose phase is adjusted by the phase adjustment unit to generate a crosstalk correction signal. A demodulation unit samples a signal generated by synthesizing the crosstalk correction signal and the received signal and to demodulate the sampled signal.
Abstract:
In a photoelectric absolute encoder including a scale having a plurality of tracks with different pitch patterns, and a detector having a light source and light receiving elements including a plurality of light receiving element arrays corresponding to the plurality of tracks, a light receiving element array is additionally arranged at a position in the detector corresponding to a boundary between the track having a pattern with a wide pitch and the track having a pattern with a narrow pitch adjacent to each other in the scale, and displacement of the detector relative to the scale in a lateral direction is detected from a signal amplitude of the added light receiving element array. In this manner, displacement of the detector relative to the scale in the lateral direction can be detected.
Abstract:
A reference voltage generator circuit generates a reference voltage corresponding to a power supply voltage. A current/voltage converter circuit converts a photocurrent output by a photoreceiver into voltage, and outputs a voltage obtained by adding the converted voltage and the reference voltage. A sample and hold circuit holds a voltage of a capacitor in response to a sample and hold signal, the capacitor having the voltage input at one end and the reference voltage input at another end. An amplifier circuit outputs an output signal where a voltage held by the sample and hold circuit is amplified with the reference voltage as a reference.
Abstract:
A rotary encoder that is capable of securing a sufficient synthesis tolerance while achieving miniaturization is provided. The rotary encoder 1 includes a rotor 3, a stator 4, and a calculating unit 5 for calculating the rotation angle. The rotor 3 has a first rotor pattern 31 with a plurality of unit patterns 310 arranged along the measurement direction around the rotating shaft 2, and a second rotor pattern 32 with fewer unit patterns 320 than the plurality of unit patterns 310 in the first rotor pattern 310 arranged along the measurement direction. The number of the plurality of unit patterns 310 of the first rotor pattern 31 and the number of the plurality of unit patterns 320 of the second rotor pattern 32 are provided such that the maximum common divisor therebetween is two or more. The calculating unit calculates the rotation angle of the rotor 3 based on the detection signals from the first rotor pattern 31 and the second rotor pattern 32.
Abstract:
A rotary encoder that is capable of securing a sufficient synthesis tolerance while achieving miniaturization is provided. The rotary encoder 1 includes a rotor 3, a stator 4, and a calculating unit 5 for calculating the rotation angle. The rotor 3 has a first rotor pattern 31 with a plurality of unit patterns 310 arranged along the measurement direction around the rotating shaft 2, and a second rotor pattern 32 with fewer unit patterns 320 than the plurality of unit patterns 310 in the first rotor pattern 310 arranged along the measurement direction. The number of the plurality of unit patterns 310 of the first rotor pattern 31 and the number of the plurality of unit patterns 320 of the second rotor pattern 32 are provided such that the maximum common divisor therebetween is two or more. The calculating unit calculates the rotation angle of the rotor 3 based on the detection signals from the first rotor pattern 31 and the second rotor pattern 32.
Abstract:
An encoder includes a light source. A booster circuit boosts a power supply voltage output by a battery, and outputs the boosted voltage. The voltage is applied to one end of a light-emitting diode. A driver circuit is inserted between another end of the light-emitting diode and a ground, the driver circuit controlling current flowing through the light-emitting diode. A voltage detector circuit detects a voltage between the light-emitting diode and the driver circuit. A control circuit causes the booster circuit to boost the power supply voltage when the voltage is lower than the power supply voltage; stops the boosting performed by the booster circuit when the voltage is equal to the power supply voltage; and controls the driver circuit such that, after the voltage reaches a predetermined value, current flows to the light-emitting diode.
Abstract:
A semiconductor integrated circuit includes a regulator configured to stabilize a power supply voltage from a solar cell and to output the same, a voltage detection circuit configured to detect the power supply voltage from the solar cell or an output voltage from the regulator, a power-on-reset circuit configured to output a reset signal to an external digital circuit by a voltage detection signal output from the voltage detection circuit, a memory main body configured to write and read data by the power supply voltage from the solar cell or the output voltage from the regulator.