Abstract:
An illumination apparatus according to the present invention includes a light source, a reflecting mirror, an optical system, and a calculator. The reflecting mirror includes a first reflector and a second reflector, and is capable, while changing a reflection angle, of reflecting and directing at an object a first divided light, the first divided light being a portion of light from the light source emitted at the first reflector. The optical system divides the light from the light source into the first divided light and a second divided light, and guides the second divided light to the second reflector. The calculator is capable of calculating the reflection angle of the reflecting mirror by receiving the second divided light reflected by the second reflector.
Abstract:
An optical probe includes a probe cover, within which is installed an optical system having an illuminating optical system and a receiving optical system. An emitting region and an incidence region through which light passes are provided to a bottom surface of the probe cover, the bottom surface forming an opposing region opposite a work piece. The bottom surface forms a surface where, of the light reflected from the work piece, light following a direct reflection direction is reflected in a direction moving away from the incidence region, from a position where light emitted from the emitting region is emitted at the work piece. Accordingly, an amount of second order reflected light striking the incidence region can be suppressed and, therefore, an occurrence of an erroneous value in received light distribution can be suppressed.
Abstract:
A coordinate measuring machine includes a mount for a workpiece, an arched frame straddling the mount, a slider movable along the frame, and a probe supported by the slider and pointed at the mount. A rotor enables the mount and the frame to relatively rotate. An XY-motion mechanism enables the mount to move in a direction along a surface of the mount.
Abstract:
A shape measuring apparatus includes: an irradiating part configured to irradiate work with a linear line laser, the irradiating part including: a light source configured to produce laser light; a first optical member configured to linearly spread the laser light from the light source and generate the line laser; and a second optical member, provided between the light source and the first optical member, configured to adjust an area of irradiation with a line laser on the work; a first sensor configured to receive a line laser reflected by the work and capture an image of the work; a lens configured to form an image of a line laser reflected by the work on an imaging surface of the first sensor; and a control part configured to control adjustment of the area of irradiation with the line laser on the work by the second optical member.
Abstract:
A shape measuring apparatus includes a first light source, a second light source, an optical system, an image capturer, and a controller. The first light source emits visible light. The second light source emits measurement light used in a measurement. The optical system emits the visible light and the measurement light at the same position on a work piece. The image capturer captures an image of the measurement light reflected by the work piece. The controller is configured to cause the emission of the visible light onto the work piece with the first light source when determining a measurement position, and to control the emission of the measurement light onto the work piece with the second light source when making the measurement.