Abstract:
An illumination apparatus according to the present invention includes a light source, a reflecting mirror, an optical system, and a calculator. The reflecting mirror includes a first reflector and a second reflector, and is capable, while changing a reflection angle, of reflecting and directing at an object a first divided light, the first divided light being a portion of light from the light source emitted at the first reflector. The optical system divides the light from the light source into the first divided light and a second divided light, and guides the second divided light to the second reflector. The calculator is capable of calculating the reflection angle of the reflecting mirror by receiving the second divided light reflected by the second reflector.
Abstract:
A non-contact probe includes: a light irradiating section that scans a measurement target object with spot-like laser beam; an image-capturing section that captures an image of the laser beam reflected by the measurement target object by using a plurality of pixel columns selected from a light-reception surface including a plurality of pixel columns, and generates a captured image; a position sensing section that senses an image-formation position of the laser beam on the captured image; and a pixel column changing section that selects a different plurality of pixel columns such that the image-formation position is included in the selected plurality of pixel columns.
Abstract:
A non-contact probe includes an irradiating part that radiates a laser beam, an irradiating mirror that reflects the laser beam from the irradiating part toward a workpiece, a light-receiving mirror that reflects the reflected light from the workpiece, and a galvano motor capable of swinging both the irradiating mirror and the light-receiving mirror. The irradiating mirror is provided at one axial end of the motor shaft that extends on both ends of the galvano motor, and the light-receiving mirror is provided at the other axial end of the motor shaft.
Abstract:
A position measuring device of the invention includes a light emitter configured to emit a laser light, a hologram configured to generate a reconstructed image of an inclined surface relative to an optical axis, a light receiver disposed on a reconstructed image forming surface of the hologram, and a measurement unit configured to measure a position of an object based on a position of light received by the light receiver. In the position measuring device of the invention, the light emitter may emit a linear laser light and the light receiver may include an image sensor having a two-dimensional array of pixels.
Abstract:
A position measuring device includes a light emitter, an image capturer, a first beam splitter, a first light receiver, a second light receiver, a calculator, and a controller. The first light receiver receives light that propagates along a first optical axis toward the light emitter and is reflected by the first beam splitter, and outputs a first signal. The second light receiver outputs a second signal corresponding to an intensity of light propagating along a second optical axis toward the image capturer. The controller controls the intensity of the laser light based on the second signal when a difference between the first signal and the second signal is smaller than a predetermined threshold, and performs control so that the laser light has a predetermined intensity when the difference between the first signal and the second signal is equal to or greater than the threshold.