Abstract:
A detector assembly for a CT imaging system is provided. The detector assembly including a scintillator block including a plurality of pixels, each pixel configured to receive x-ray beams travelling in a transmission direction, a plurality of photodiodes, and a light guide coupled between the scintillator block and the plurality of photodiodes, the light guide including a plurality of light pipes, each light pipe configured to guide light emitted from a pixel of the plurality of pixels into an associated photodiode of the plurality of photodiodes, wherein each pixel has a first cross-sectional area that is substantially perpendicular to the transmission direction, wherein each photodiode has a second cross-sectional area that is substantially perpendicular to the transmission direction, and wherein the first cross-sectional area is different from the second cross-sectional area.
Abstract:
A luggage detection device is configured to detect luggage by generating computed tomography (CT) imaging slices. For each of the CT imaging slices, the luggage detection device is configured to identify at least one region within the CT imaging slice for removal based on at least one predefined rule, to remove pixel data associated with the at least one identified region within the CT imaging slice, to generate a pixel count representing a number of pixels in the modified CT imaging slice that include a value above a threshold pixel value, and to generate an object indicator based on a determination that the generated pixel count is above a threshold pixel count. The luggage detection device is further configured to display at least one of the plurality of CT image slices based on the presence of the corresponding baggage indicator.
Abstract:
A computed tomography (CT) gantry system is described herein. The CT gantry system includes a frame, a plurality of support wheels rotatably coupled to the frame, and a gantry resting upon the plurality of support wheels. In some embodiments, the gantry includes two gantry rings, and a cross member extending between the two gantry rings. In other embodiments, the gantry includes a first gantry ring, and a second gantry ring spaced apart from the first gantry ring in a direction parallel to an axis of rotation of the gantry. In some embodiments, the plurality of support wheels includes a plurality of front support wheels and a plurality of back support wheels. In some embodiments, the gantry includes a front gantry ring resting upon the front support wheels, a back gantry ring resting upon the back support wheels, and a cross member coupled between the front and back gantry rings.
Abstract:
A helical CT scanner for imaging an object is provided. The helical CT scanner includes an X-ray emitter configured to emit X-ray beams towards the object, and a detector array positioned opposite the X-ray emitter, the detector array including a plurality of discrete detector blocks arranged in a two-dimensional grid, each detector block including a plurality of pixels, wherein at least one first gap is defined between adjacent detector blocks in a first direction, and wherein at least one second gap is defined between adjacent detector blocks in a second direction. The helical CT scanner further includes a processing device communicatively coupled to said detector array, said processing device configured to reconstruct an image of the object based on image data acquired using said detector array.
Abstract:
A helical CT scanner for imaging an object is provided. The helical CT scanner includes an X-ray emitter configured to emit X-ray beams towards the object, and a detector array positioned opposite the X-ray emitter, the detector array including a plurality of discrete detector blocks arranged in a two-dimensional grid, each detector block including a plurality of pixels, wherein at least one first gap is defined between adjacent detector blocks in a first direction, and wherein at least one second gap is defined between adjacent detector blocks in a second direction. The helical CT scanner further includes a processing device communicatively coupled to said detector array, said processing device configured to reconstruct an image of the object based on image data acquired using said detector array.
Abstract:
A gantry rail for a gantry computed tomography (CT) system includes a secondary side of a rotary transformer and an annular body having an annular rolling surface and an annular slip ring surface. The annular body is aligned orthogonal to a longitudinal axis of the gantry CT system. The annular rolling surface has a normal vector that extends radially outward and orthogonal to the longitudinal axis. The annular slip ring surface defines a plane orthogonal to the longitudinal axis, and includes a slot disposed in the slip ring surface. The slot is configured to engage the secondary side of the rotary transformer.
Abstract:
A line-frequency rotary transformer is provided, including a primary core and a secondary core. The primary core is magnetically couplable to the secondary core. The primary core includes a first plurality of E-core steel laminates arranged in a first ring couplable to a stator. The primary core includes a primary winding disposed within the first ring and configured to transmit line-frequency AC power. The secondary core includes a second plurality of E-core steel laminates arranged in a second ring couplable to a gantry. The gantry is rotatably couplable to the stator. The secondary core includes a secondary winding disposed within the second ring and is configured to receive a line-frequency AC power induced in the secondary winding through the primary core and the secondary core by the primary winding.
Abstract:
A gantry assembly for use with an imaging system is provided. The gantry assembly includes an x-ray source and a modular detector assembly that includes a plurality of selectively removable detector modules. A first detector module of the plurality of detector modules is mounted at a first distance from the x-ray source and a second detector module of the plurality of detector modules is mounted at a second distance from the x-ray source. The first distance is different from the second distance. The gantry assembly is configured to image objects using both a first field of view and a second field of view that is larger than the first field of view.
Abstract:
A compression device for compressing image data generated by a computed tomography (CT) imaging system is described herein. The compression device is configured to compress the image data by implementing a method including receiving image data from the CT imaging system and requantizing the image data in a square root domain. The method further includes identifying a group of projections (GOP) in the image data, including a first projection and a plurality of subsequent projections, and performing spatial-delta encoding on the first projection and temporal-delta encoding on each of the plurality of subsequent projections. The method also includes identifying a signed value in the GOP, and converting the signed value to an unsigned value. The method further includes entropy coding the image data in the GOP, and packetizing the GOP for transmission or storage.
Abstract:
A computed tomography (CT) gantry system is described herein. The CT gantry system includes a frame, a plurality of support wheels rotatably coupled to the frame, and a gantry resting upon the plurality of support wheels. In some embodiments, the gantry includes two gantry rings, and a cross member extending between the two gantry rings. In other embodiments, the gantry includes a first gantry ring, and a second gantry ring spaced apart from the first gantry ring in a direction parallel to an axis of rotation of the gantry. In some embodiments, the plurality of support wheels includes a plurality of front support wheels and a plurality of back support wheels. In some embodiments, the gantry includes a front gantry ring resting upon the front support wheels, a back gantry ring resting upon the back support wheels, and a cross member coupled between the front and back gantry rings.