Abstract:
High quality epitaxial layers of monocrystalline materials can be grown overlying monocrystalline substrates such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers. An accommodating buffer layer comprises a layer of monocrystalline oxide spaced apart from a silicon wafer by an amorphous interface layer of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. The accommodating buffer layer is lattice matched to both the underlying silicon wafer and the overlying monocrystalline material layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer. In addition, formation of a compliant substrate may include utilizing surfactant enhanced epitaxy, epitaxial growth of single crystal silicon onto single crystal oxide, and epitaxial growth of Zintl phase materials. An arrayed wavelength grating device is formed overlying the silicon wafer.
Abstract:
High quality epitaxial layers of monocrystalline materials can be grown overlying monocrystalline substrates such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers. An accommodating buffer layer comprises a layer of monocrystalline oxide spaced apart from a silicon wafer by an amorphous interface layer of silicone oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. The accommodating buffer layer is lattice matched to both the underlying silicon wafer and the overlying monocrystalline material layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer. In addition, formation of a compliant substrate may include utilizing surfactant enhanced epitaxy, epitaxial growth of single crystal silicon onto single crystal oxide, and epitaxial growth of Zintl phase materials. Electro-optical devices, optical devices, and electrical devices employable within a node for a mesh network are formed overlying the silicon wafer.
Abstract:
Optical signal delay apparatus and method may delay the progress of an optical signal through a semiconductor structure for a predetermined period of time. An optical delay device comprising a directional coupler and an optical signal loop may be used to delay optical signals. If desired, at least part of a directional coupler in an optical delay device may be formed from electro-optical materials so that the optical signals may be selectively transferred from the directional coupler to an optical Signal loop. Selective transfer may be provided through the application of a voltage. Optical signals with differing wavelengths may be differentiated by using a plurality of optical delay devices that each delay an optical signal having a different wavelength.