METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE

    公开(公告)号:US20230411322A1

    公开(公告)日:2023-12-21

    申请号:US18176189

    申请日:2023-02-28

    摘要: A method for manufacturing a semiconductor device, a first structure is formed on a first substrate. A first bonded body is formed by bonding a supporting substrate lower in rigidity than the first substrate to a first principal surface, on which the first structure is formed, of the first substrate. The first substrate is removed from the first bonded body. A second structure is formed on a second substrate. A third structure is formed on a third substrate. A second bonded body is formed by bonding a second principal surface, on which the second structure is formed, of the second substrate to a third principal surface, on which the third structure is formed, of the third substrate. The second substrate is removed from the second bonded body. A third bonded body is formed by bonding a fourth principal surface, which is exposed after the first substrate is removed, of the first bonded body to a fifth principal surface, which is exposed after the second substrate is removed, of the second bonded body. The supporting substrate is removed from the third bonded body.

    Device including quantum dots
    10.
    发明授权

    公开(公告)号:US10056523B2

    公开(公告)日:2018-08-21

    申请号:US15350068

    申请日:2016-11-13

    摘要: A method of making a device comprises forming a layer comprising quantum dots over a substrate including a first electrode, fixing the layer comprising quantum dots formed over the substrate, and exposing at least a portion of, and preferably all, exposed surfaces of the fixed layer comprising quantum dots to small molecules. The layer comprising quantum dots can be preferably fixed in the absence or substantial absence of oxygen. Also disclosed is a method of making a device comprises forming a layer comprising quantum dots over a substrate including a first electrode, exposing the layer comprising quantum dots to small molecules and light flux. Also disclosed is a method of making a film including a layer comprising quantum dots, the method comprising forming a layer comprising quantum dots over a carrier substrate, fixing the layer comprising quantum dots formed over the carrier substrate, and exposing at least a portion of, and preferably all, exposed surfaces of the fixed layer comprising quantum dots to small molecules. The layer comprising quantum dots can be preferably fixed in the absence or substantial absence of oxygen. Also disclosed is a method of preparing a device component including a layer comprising quantum dots, the method comprising forming a layer comprising quantum dots over a layer comprising a charge transport material, exposing the layer comprising quantum dots to small molecules and light flux. Devices, device components, and films are also disclosed.