Abstract:
A latch apparatus is formed of a cantilevered beam (202) and a button (204). The cantilevered beam (202) comprises a loading feature (210) and a notch (216), while the button (204) comprises a slot (218) and an engagement tab (220). When mounted within a cavity of a housing, the cantilevered beam and button provide both push-in and side sliding movement of the button. The latch is locked by sliding the button in one direction, and the latch is unlocked by pushing the button inward and then sliding the button in an opposite direction. The housing may further comprise an angled catch feature within the cavity for mating with a complimentary angle of the button to avoid inadvertent unlocking of the latch. The combination of push in force and side sliding force minimizes inadvertent unlocking of the latch assembly.
Abstract:
A battery pack includes one or more battery cells disposed in a barrier structure that forms a flow channel to direct venting material from a battery cell experiencing a fault condition out of the battery pack in a way that allows expansion of the vented gas before it exits the battery pack. Where two or more battery cells are included in the battery pack, the barrier structure electrically and thermally insulates them from each other so that in the event of a battery cell venting, it will not affect other battery cells and cause a thermal runaway condition.
Abstract:
A charging apparatus (102), system (100) and method (500) are provided for charging and/or powering a wearable electronic device, such as electronic eyeglasses. The charging apparatus comprises an acoustic horn, a piezoelectric transducer, and charger circuitry for converting ultrasonic waves received at the horn into a charging signal. The charging signal is used for charging and/or powering the wearable electronic device while the device is being worn.
Abstract:
A method and apparatus for controlling access to one or more memories in a rechargeable battery includes a switching circuit that connects the memory to a device data contact, and disconnects the memory from a charger data contact, when the rechargeable battery is connected only to a device powered by a battery. The switching circuit, however, connects the memory to the charger data contact and disconnects it from the device data contact. In some embodiments a second memory that contains a subset of the data in the first memory is connected to the device data contact when the first memory is connected to the charger data contact.