摘要:
The present invention relates to a device as well as a method for the additive manufacture of components by deposition of material layers by layer-by-layer joining of powder particles to one another and/or to an already produced pre-product or substrate, via selective interaction of the powder particles with a high-energy beam, wherein, for smoothing a surface of the component being produced running crosswise to the deposited material layers in between the deposition of two layers of the component, the complete edge region of the last layer that is applied and that runs along a surface of the component being produced is compacted in a direction of action that has a directional component parallel to the build-up direction of the layers, and/or at least one edge region of a surface of the component is also compacted.
摘要:
The present invention relates to a device as well as a method for the additive manufacture of components by deposition of material layers by layer-by-layer joining of powder particles to one another and/or to an already produced pre-product or substrate, via selective interaction of the powder particles with a high-energy beam, wherein, for smoothing a surface of the component being produced running crosswise to the deposited material layers in between the deposition of two layers of the component, the complete edge region of the last layer that is applied and that runs along a surface of the component being produced is compacted in a direction of action that has a directional component parallel to the build-up direction of the layers, and/or at least one edge region (19) of a surface of the component (3′) is also compacted.
摘要:
The invention relates to a method and device for ascertaining an edge layer characteristic of a component (12), in particular a component (12) for an aircraft engine. In the method, a reference body (22) with a known edge layer characteristic is arranged on the surface of the component (12). An ultrasonic wave (18) is introduced into the surfaces of the component (12) and the reference object (22) by an ultrasonic transmitter (16). An ultrasonic wave (18) resulting from the exchange between the component (12) and the reference body (22) is detected by an ultrasonic detector (20), and an edge layer characteristic of the component (12) is ascertained by an ascertaining device (28) using a difference between the generated ultrasonic wave (18) and the resulting ultrasonic wave (18).
摘要:
The present invention relates to a method and a device for material processing with a high-energy beam (7), with a beam-generating device (4) for generating a high-energy beam and with a component holder (2), in which is disposed the material that is to be processed with the high-energy beam, wherein the beam-generating device and the component holder are disposed or can be disposed relative to one another so that the high-energy beam impinges on the material surface (12) of the material to be processed at an angle not equal to 0° or 180° or a whole-number multiple thereof, and wherein the beam-generating device or at least parts thereof and/or another beam-generating device can be disposed, and/or that the beam-generating device comprises a deflection means (5, 6), so that a high-energy beam (7a) can be aligned parallel to and at a distance from the material surface (12) to be processed.
摘要:
A method for determining residual stresses of a component (14), in particular a component of an aircraft engine, while it is being manufactured by an additive manufacturing process. The method includes the following steps: creating at least one local melt pool (26) in a surface (24) of the component (14) to be manufactured after a predetermined portion of the component is completed; optically detecting surface distortions and/or elongations occurring at least in a region around the created melt pool (26); and determining the residual stresses of the component (14) which are present at least in the region around the created melt pool (26) based on the optically detected surface distortions and/or elongations. Further an apparatus for determining residual stresses of a component (14) while it is being manufactured by an additive manufacturing process is provided.
摘要:
Disclosed is a method for the non-destructive testing of workpiece surfaces of a workpiece by means of fluorescent penetrant testing or dye penetrant testing. The method comprises applying a penetrant to the region of the workpiece surface to be examined, thereby allowing the penetrant to penetrate into possible recesses in the workpiece surface, applying a developer to the region of the workpiece surface to be tested; bleaching the penetrant by a gaseous or liquid oxidant; and visually assessing the penetrant that has remained in the recesses present in the workpiece surface.
摘要:
The invention relates to a method and device for ascertaining an edge layer characteristic of a component (12), in particular a component (12) for an aircraft engine. In the method according to the invention, a reference body (22) with a known edge layer characteristic is arranged on the surface of the component (12). At least one ultrasonic wave (18) is introduced into the surfaces of the component (12) and the reference object (22) by means of an ultrasonic transmitter (16). At least one ultrasonic wave (18) resulting from the exchange between the component (12) and the reference body (22) is detected by means of an ultrasonic detector (20), and an edge layer characteristic of the component (12) is ascertained by means of an ascertaining device (28) using a difference between the at least one generated ultrasonic wave (18) and the at least one resulting ultrasonic wave (18).
摘要:
A method for determining residual stresses of a component (14), in particular a component of an aircraft engine, while it is being manufactured by an additive manufacturing process. The method includes the following steps: creating at least one local melt pool (26) in a surface (24) of the component (14) to be manufactured after a predetermined portion of the component is completed; optically detecting surface distortions and/or elongations occurring at least in a region around the created melt pool (26); and determining the residual stresses of the component (14) which are present at least in the region around the created melt pool (26) based on the optically detected surface distortions and/or elongations. Further an apparatus for determining residual stresses of a component (14) while it is being manufactured by an additive manufacturing process is provided.