摘要:
A multi-layer mirror includes on top of the multi-layer mirror a spectral purity enhancement layer, for example for application in an EUV lithographic apparatus. This spectral purity enhancement layer includes a first spectral purity enhancement layer, but between the multi-layer mirror and first spectral purity enhancement layer there may optionally be an intermediate layer or a second spectral purity enhancement layer and intermediate layer. Hence, multi-layer mirrors with the following configurations are possible: multi-layer mirror/first spectral purity enhancement layer; multi-layer mirror/intermediate layer/first spectral purity enhancement layer; and multi-layer mirror/second spectral purity enhancement layer/intermediate layer/first spectral purity enhancement layer. The spectral purity of normal incidence radiation may be enhanced, such that DUV radiation is diminished relatively stronger than EUV radiation.
摘要:
A multi-layer mirror includes a multi-layer stack. The multi-layer stack includes a plurality of alternating layers with a multi-layer stack top layer and a spectral filter top layer arranged on the multi-layer stack. The spectral filter top layer includes a first spectral purity enhancement layer that includes a first material m1 and has a first layer thickness d1, an intermediate layer that includes a second material m2 and has a second layer thickness d2. The intermediate layer is arranged on the multi-layer stack top layer. The first material is selected from SiN, Si3N4, SiO2, ZnS, Te, diamond, CsI, Se, SiC, amorphous carbon, MgF2, CaF2, TiO2, Ge, PbF2, ZrO2, BaTiO3, LiF or NaF. The second material includes a material different from the first material, and d1+d2 has a thickness between 1.5 and 40 nm.
摘要:
A multi-layer mirror includes on top of the multi-layer mirror a spectral purity enhancement layer, for example for application in an EUV lithographic apparatus. This spectral purity enhancement layer includes a first spectral purity enhancement layer, but between the multi-layer mirror and first spectral purity enhancement layer there may optionally be an intermediate layer or a second spectral purity enhancement layer and intermediate layer. Hence, multi-layer mirrors with the following configurations are possible: multi-layer mirror/first spectral purity enhancement layer; multi-layer mirror/intermediate layer/first spectral purity enhancement layer; and multi-layer mirror/second spectral purity enhancement layer/intermediate layer/first spectral purity enhancement layer. The spectral purity of normal incidence radiation may be enhanced, such that DUV radiation is diminished relatively stronger than EUV radiation.
摘要:
A multi-layer mirror includes a multi-layer stack. The multi-layer stack includes a plurality of alternating layers with a multi-layer stack top layer and a spectral filter top layer arranged on the multi-layer stack. The spectral filter top layer includes a first spectral purity enhancement layer that includes a first material m1 and has a first layer thickness d1, an intermediate layer that includes a second material m2 and has a second layer thickness d2. The intermediate layer is arranged on the multi-layer stack top layer. The first material is selected from SiN, Si3N4, SiO2, ZnS, Te, diamond, CsI, Se, SiC, amorphous carbon, MgF2, CaF2, TiO2, Ge, PbF2, ZrO2, BaTiO3, LiF or NaF. The second material includes a material different from the first material, and d1+d2 has a thickness between 1.5 and 40 nm.
摘要:
A multi-layer mirror includes a multi-layer stack. The multi-layer stack includes a plurality of alternating layers with a multi-layer stack top layer and a spectral filter top layer arranged on the multi-layer stack. The spectral filter top layer includes a first spectral purity enhancement layer that includes a first material m1 and has a first layer thickness d1, an intermediate layer that includes a second material m2 and has a second layer thickness d2. The intermediate layer is arranged on the multi-layer stack top layer. The first material is selected from SiN, Si3N4, SiO2, ZnS, Te, diamond, CsI, Se, SiC, amorphous carbon, MgF2, CaF2, TiO2, Ge, PbF2, ZrO2, BaTiO3, LiF or NaF. The second material includes a material different from the first material, and d1+d2 has a thickness between 1.5 and 40 nm.
摘要:
A lithographic apparatus includes a radiation system for providing a beam of radiation. The radiation system includes at least one of a contaminant trap for trapping material emanating from the radiation source and a collector for collecting the beam of radiation. The at least one of the contaminant trap and the collector includes an element arranged in the path of the radiation beam on which the material emanating from the radiation source can deposit during propagation of the radiation beam in the radiation system. At least a part of the element disposed in the path of the radiation beam has a surface that has a highly specular grazing incidence reflectivity to reduce the absorption of the radiation beam in a direction of propagation of the radiation beam substantially non-parallel to the surface of the element, so that a thermal load experienced by the element is reduced.
摘要:
Particles emitted by a radiation source, and moving from the radiation source towards a processing system for processing the radiation from the radiation source, are filtered out of radiation propagating through a predetermined cross section of the radiation as emitted by the radiation source by a filter system. The filter system includes a plurality of foils and a transporter for transporting the foils along a trajectory which extends within the beam so that the foils intercept the particles within the beam. The transporter is arranged to transport the foils by a substantially translatory movement of the foils along at least a part of the trajectory.
摘要:
A lithographic apparatus comprising a support configured to support a patterning device; a substrate table configured to hold a substrate; a projection system configured to project a pattern imparted to a radiation beam by the patterning device onto a target portion of the substrate; and a first multi-layer mirror and a second multi-layer mirror, the first multi-layer mirror and the second multi-layer minor being arranged along a path of the radiation beam, the first multi-layer minor and the second multi-layer mirror each having a reflectivity of at least about 50% in extreme ultra violet wavelength range, and the first multi-layer mirror configured to reduce radiation having wavelengths in a first wavelength range and the second multi-layer minor configured to reduce radiation having wavelengths in a second wavelength range different from the first wavelength range, wherein the first wavelength range and the second wavelength range are outside extreme ultra violet wavelength range.
摘要:
A lithographic apparatus comprising a support configured to support a patterning device; a substrate table configured to hold a substrate; a projection system configured to project a pattern imparted to a radiation beam by the patterning device onto a target portion of the substrate; and a first multi-layer mirror and a second multi-layer mirror, the first multi-layer mirror and the second multi-layer minor being arranged along a path of the radiation beam, the first multi-layer minor and the second multi-layer mirror each having a reflectivity of at least about 50% in extreme ultra violet wavelength range, and the first multi-layer mirror configured to reduce radiation having wavelengths in a first wavelength range and the second multi-layer minor configured to reduce radiation having wavelengths in a second wavelength range different from the first wavelength range, wherein the first wavelength range and the second wavelength range are outside extreme ultra violet wavelength range.
摘要:
A lithographic apparatus is disclosed. The apparatus includes a source for supplying hydrogen radicals, a guide for use in conjunction with the source, for directing hydrogen radicals to an application surface to be targeted by the hydrogen radicals. The guide is provided with a coating having a hydrogen radical recombination constant of less than 0.2. In this way, the radicals can be transported with reduced losses and are able to better interact with remaining contaminants on application surfaces, such as mirror surfaces.