摘要:
The present disclosure is a infrared sensor capable of being integrated into a IR focal plane array. It includes of a CMOS based readout circuit with preamplification, noise filtering, and row/column address control. Using either a microbolometer device structure with either a thermal sensing element of vanadium oxide or amorphous silicon, a nanocomposite is fabricated on top of either of these materials comprising aligned or unaligned carbon nanotube films with IR trans missive layer of silicon nitride followed by one to five monolayers of graphene. These layers are connected in series minimizing the noise sources and enhancing the NEDT of each film. The resulting IR sensor is capable of NEDT of less than 1 mK. The wavelength response is from 2 to 12 microns. The approach is low cost using a process that takes advantage of the economies of scale of wafer level CMOS.
摘要:
The present disclosure is an infrared sensor capable of being integrated into a IR focal plane array. It includes of a CMOS based readout circuit with preamplification, noise filtering, and row/column address control. Using either a microbolometer device structure with either a thermal sensing element of vanadium oxide or amorphous silicon, a nanocomposite is fabricated on top of either of these materials comprising aligned or unaligned carbon nanotube films with IR transmissive layer of silicon nitride followed by one to five monolayers of graphene. These layers are connected in series minimizing the noise sources and enhancing the NEDT of each film. The resulting IR sensor is capable of NEDT of less than 1 mK. The wavelength response is from 2 to 12 microns. The approach is low cost using a process that takes advantage of the economies of scale of wafer level CMOS.
摘要:
Radiation detecting and sensing systems using graphene and methods of making the same are provided; including a substrate, a single or multiple layers of graphene nanoribbons, first and second conducting interconnects each in electrical communication with the graphene layers. Graphene layers are tuned to increase the temperature coefficient of resistance, increasing sensitivity to IR radiation. Absorption over a wide wavelength range (200 nm to 1 mm) is possible based on the three alternative devices structures described within. Devices can variously include (a) a microbolometer based graphene film where the TCR of the layer is enhanced with selected functionalization molecules, (b) graphene layers with a source and drain metal interconnect and a deposited metal of SiO2 gate which modulates the current flow across the phototransistor detector, and/or (c) tuned graphene layers layered on top of each other where a p-type layer and a n-type layer is created using a combination of oxidation and doping.
摘要:
Durable hydrophobic antireflection structures for optical elements, optical windows, and front sheets of encapsulated photovoltaic and photonic devices are disclosed which can minimize reflection losses over the entire accessible portion of the solar spectrum simultaneously provide self-cleaning and finger-print-free surface. Reduced reflectance and self-cleaning surfaces are resulted from coating the front sheet of encapsulated device with combination of nonporous and porous nanostructured materials such as silicon dioxide nanorods and PTFE. Step-graded antireflection structures can exhibit excellent omnidirectional performance, significantly outperforming conventional quarter wavelength and low-high-low refractive index coatings. Methods of constructing nanostructured durable optical coatings with hydrophobic surfaces are disclosed that can cover large-area ridged and flexible substrates.
摘要:
Ultraviolet (UV), Terahertz (THZ) and Infrared (IR) radiation detecting and sensing systems using graphene nanoribbons and methods to making the same. In an illustrative embodiment, the detector includes a substrate, single or multiple layers of graphene nanoribbons, and first and second conducting interconnects each in electrical communication with the graphene layers. Graphene layers are tuned to increase the temperature coefficient of resistance to increase sensitivity to IR radiation. Absorption over a wide wavelength range of 200 nm to 1 mm are possible based on the two alternative devices structures described within. These two device types are a microbolometer based graphene film where the TCR of the layer is enhanced with selected functionalization molecules. The second device structure consists of a graphene nanoribbon layers with a source and drain metal interconnect and a deposited metal of SiO2 gate which modulates the current flow across the phototransistor detector.
摘要:
The present disclosure relates to microbolometer structures having top layers of amorphous silicon or vanadium oxide. In some examples, combinations of carbon nanotubes, nanoparticles, and/or thin films can be deposited atop the existing top layer of amorphous silicon or top layer of vanadium oxide of a microbolometer structure. Such configurations can increase the sensitivity of the microbolometers to less than 4 mK, less than 2 mK, and in some examples less than 1 mK.
摘要:
The use of silicon or vanadium oxide nanocomposite consisting of graphene deposited on top of an existing amorphous silicon or vanadium oxide microbolometer can result in a higher sensitivity IR detector. An IR bolometer type detector consisting of a thermally isolated nano-sized (
摘要:
The present disclosure is a infrared sensor capable of being integrated into a IR focal plane array. It includes of a CMOS based readout circuit with preamplification, noise filtering, and row/column address control. Using either a microbolometer device structure with either a thermal sensing element of vanadium oxide or amorphous silicon, a nanocomposite is fabricated on top of either of these materials comprising aligned or unaligned carbon nanotube films with IR trans missive layer of silicon nitride followed by one to five monolayers of graphene. These layers are connected in series minimizing the noise sources and enhancing the NEDT of each film. The resulting IR sensor is capable of NEDT of less than 1 mK. The wavelength response is from 2 to 12 microns. The approach is low cost using a process that takes advantage of the economies of scale of wafer level CMOS.
摘要:
Ultraviolet (UV), Terahertz (THZ) and Infrared (IR) radiation detecting and sensing systems using graphene nanoribbons and methods to making the same. In an illustrative embodiment, the detector includes a substrate, single or multiple layers of graphene nanoribbons, and first and second conducting interconnects each in electrical communication with the graphene layers. Graphene layers are tuned to increase the temperature coefficient of resistance to increase sensitivity to IR radiation. Absorption over a wide wavelength range of 200 nm to 1 mm are possible based on the two alternative devices structures described within. These two device types are a microbolometer based graphene film where the TCR of the layer is enhanced with selected functionalization molecules. The second device structure consists of a graphene nanoribbon layers with a source and drain metal interconnect and a deposited metal of SiO2 gate which modulates the current flow across the phototransistor detector.
摘要:
A high-performance Microbolometer that incorporates vanadium oxide (VOx) along with carbon nanotubes (CNTs) or graphene. This Microbolometer, which uses a microbridge comprising Si3N4 and VOx, provides low noise and high dynamic range longwave infrared (LWIR) band detection. Addition of CNTs/graphene provides a high level of performance [low 1/f noise, noise equivalent temperature difference (NETD), and thermal time constant] due to the high temperature coefficient of resistance (TCR) of these materials.