摘要:
A water absorbent resin is dried in a continuous fluidized bed having a heat transfer tube and at least two drying rooms. Pulverization is performed between a first drying room at not less than 80° C. to not more than 200° C. and a second or subsequent room at not less than 100° C. to not more than 220° C. A method for producing a water absorbent resin includes: (1) polymerizing a monomer aqueous solution; (2) drying a hydrogel polymer of step (1); (3) performing particle size control of the dry polymer of the step (2); (5) surface crosslinking the water absorbent resin powder of step (3), and step (4) of performing a second heat drying on the water absorbent resin powder of step (3), preceding step (5). The water absorbent resin has a moisture content of 0 wt % to 3 wt % before the step (5).
摘要:
Drying is performed in a continuous fluidized bed having at least two drying rooms. Drying is performed after pulverization is performed between drying in a first drying room and drying in a second or subsequent room. Drying is performed in a continuous fluidized bed whose fluidized bed contains a heat transfer tube. The second or subsequent drying room has a higher drying temperature than the first drying room. Drying is performed with the drying temperature of the first drying room falling within a range of not less than 80° C. to not more than 200° C. and with the drying temperature of the second or subsequent drying room falling within a range of not less than 100° C. to not more than 220° C. Further, a method for producing a water absorbent resin includes: a sequence of the steps of: (1) polymerizing a monomer aqueous solution; (2) drying a hydrogel polymer obtained in the step (1); (3) performing particle size control by either pulverizing or pulverizing and classifying a dry polymer obtained in the step (2); and (5) performing surface crosslinking on water absorbent resin powder whose particle size has been controlled in the step (3), the method further including the step (4) of performing second heat drying on the water absorbent resin powder whose particle size has been controlled in the step (3), the step (4) preceding the step (5). Further, the water absorbent resin has a moisture content (defined by a loss on drying performed for three hours at 180° C.) of 0 wt % to 3 wt % before it is supplied to the step (5). (This makes it possible to provide a method for producing a water absorbent resin which method makes it possible to obtain a particulate water absorbent resin of excellent properties at low cost with high productivity.
摘要:
A production of a water-absorbent resin by which a particle diameter of the water-absorbent resin can be controlled simply and conveniently, and a content of fine powder can be decreased, without necessity of change of raw materials or expensive facility investment is to be provided. The method is a continuous production method of a polyacrylic acid (salt)-based water-absorbent resin, comprising a polymerization step of an aqueous solution containing acrylic acid (salt), a drying step of the resultant hydrogel-like polymer, a pulverization step of the dried substance, a classification step of the pulverized substance, and optionally a surface cross-linking step of the classified substance, wherein (a) the drying step and the pulverization step are connected via a storage step and a transportation step; and (b) a time of holding the dried substance from a time of completing the drying step to a time of starting the pulverization step is set at 3 minutes or longer.
摘要:
A production of a water-absorbent resin by which a particle diameter of the water-absorbent resin can be controlled simply and conveniently, and a content of fine powder can be decreased, without necessity of change of raw materials or expensive facility investment is to be provided. The method is a continuous production method of a polyacrylic acid (salt)-based water-absorbent resin, comprising a polymerization step of an aqueous solution containing acrylic acid (salt), a drying step of the resultant hydrogel-like polymer, a pulverization step of the dried substance, a classification step of the pulverized substance, and optionally a surface cross-linking step of the classified substance, wherein (a) the drying step and the pulverization step are connected via a storage step and a transportation step; and (b) a time of holding the dried substance from a time of completing the drying step to a time of starting the pulverization step is set at 3 minutes or longer.
摘要:
An apparatus (2) includes a neutralization tank (3), a pump (4), a heat exchanger (6), a line mixer (8), a polymerizer (10), a first pipe (12), a second pipe (14), a third pipe (16), a fourth pipe (18), and a fifth pipe (20). Continuously supplied into the neutralization tank (3) are a monomer aqueous solution and a basic aqueous solution, so as to prepare a mixture solution. The mixture solution is circulated through the first pipe (12), the pump (4), the second pipe (14), the heat exchanger (6), and the third pipe (16). The mixture solution is supplied to the polymerizer through the fourth pipe (18). The apparatus (2) satisfies a requirement that a value X is not more than 200, which value X is found according to the following expression: “X=(V/F)·A”, wherein V is a volume of the mixture solution present in a neutralization system, F is a flow volume of the mixture solution to be supplied to a polymerization system, and A is a contact area of the mixture solution present in the neutralization system with a device(s) and a pipe(s) constituting the neutralization system. With this arrangement, it is possible to provide a water absorbent resin having superior whiteness.
摘要:
An apparatus (2) includes a neutralization tank (3), a pump (4), a heat exchanger (6), a line mixer (8), a polymerizer (10), a first pipe (12), a second pipe (14), a third pipe (16), a fourth pipe (18), and a fifth pipe (20). Continuously supplied into the neutralization tank (3) are a monomer aqueous solution and a basic aqueous solution, so as to prepare a mixture solution. The mixture solution is circulated through the first pipe (12), the pump (4), the second pipe (14), the heat exchanger (6), and the third pipe (16). The mixture solution is supplied to the polymerizer through the fourth pipe (18). The apparatus (2) satisfies a requirement that a value X is not more than 200, which value X is found according to the following expression: “X=(V/F)·A”, wherein V is a volume of the mixture solution present in a neutralization system, F is a flow volume of the mixture solution to be supplied to a polymerization system, and A is a contact area of the mixture solution present in the neutralization system with a device(s) and a pipe(s) constituting the neutralization system. With this arrangement, it is possible to provide a water absorbent resin having superior whiteness.
摘要:
A particulate water absorbent resin is obtained by polymerizing an unsaturated monomer so as to form a cross-linked polymer hydrogel and drying and pulverizing the cross-linked polymer hydrogel, and plural classification steps different from each other are carried out so as to remove fine powder. In this manner, the present invention provides the method for classification of particulate water absorbent resin which method allows particulate water absorbent resin having a desired particle diameter range to be efficiently obtained at low cost while securing the high productivity even in case where a larger production equipment is used.
摘要:
[PROBLEM]It is an object of the present invention to efficiently obtain efficiently a water-absorbent resin having excellent property.[SOLUTION]A production method for a water-absorbent resin, comprising: a polymerization step for obtaining hydrogel by subjecting a monomer aqueous solution to a polymerization reaction; and a drying step for drying the hydrogel; wherein drying in the drying step is performed using a continuous through-flow belt-type drying machine; solid content of the hydrogel supplied to the drying step is 35% by weight or more, and thickness variation rate (1) represented by the following EXPRESSION 1 of the hydrogel loaded onto through-flow belt in the continuous through-flow belt, is 1.05 to 5: [MATH. 1] Thickness variation rate (1)=(Maximum thickness of hydrogel in a width direction of the through-flow belt)/(Average thickness of hydrogel in a width direction of the through-flow belt). [EXPRESSION 1]
摘要:
A particulate water absorbent resin is obtained by polymerizing an unsaturated monomer so as to form a cross-linked polymer hydrogel and drying and pulverizing the cross-linked polymer hydrogel, and plural classification steps different from each other are carried out so as to remove fine powder. In this manner, the present invention provides the method for classification of particulate water absorbent resin which method allows particulate water absorbent resin having a desired particle diameter range to be efficiently obtained at low cost while securing the high productivity even in case where a larger production equipment is used.
摘要:
An object of the present invention is to make it possible, in order to form the fine powder of the water-absorbent resin into a water-absorbing material having particle diameters favorable for practical use, that a water-absorbing material which has high agglomeration strength and is excellent in the quality performances is obtained at a low cost with good efficiency without causing the problems of the adhesion to such as treatment apparatus. As a means of achieving this object, a process according to the present invention for production of a water-absorbing material is a process for production of a water-absorbing material from a fine powder of a water-absorbent resin wherein the water-absorbing material is a particulate water-absorbing material having particle diameters larger than the fine powder, with the process comprising: a step (a) of adding an aqueous liquid to the fine powder of the water-absorbent resin with such as a high-speed stirring type continuous extrusion mixer 50 so that the overall average water content will be in the range of 20 to 60 weight %, whereby particles of the fine powder are agglomerated to thus obtain a particulate hydrous material 70 of the water-absorbent resin; and a step (b) of applying a mechanical compression force to the particulate hydrous material 70 and, at the same time, knead-pulverizing it, with such as a meat chopper apparatus 30, thereby obtaining particulate agglomerates 40 of the water-absorbing material.