摘要:
The present invention provides an electron-beam excited plasma generator which can effectively form samples of larger areas.The electron-beam excited plasma generator according to the present invention comprises a cathode (11) for emitting thermions; a discharge electrode (23) for gas discharge between the cathode and the same; an intermediate electrode (13) positioned coaxially with the discharge electrode in an axial direction; a discharge chamber (2) to be filled with discharge gas plasma generated by the gas discharge between the cathode and the discharge electrode; a plasma processing chamber (3) formed adjacent to the discharge chamber with a partition wall (21) disposed therebetween and positioned so that a surface-to-be-processed of a workpiece-to-be-processed (35) is positioned perpendicular to the axial direction; a plurality of orifices (22) for pulling out electrons in the discharge gas plasma in the discharge chamber into the plasma processing chamber, each being formed in the partition wall substantially perpendicular to the axial line and distributed radially with respect to the axial direction; and an accelerating electrode (31) disposed in the plasma processing chamber for pulling out and accelerating the electrons through the orifices.
摘要:
In an electron beam excited ion irradiation apparatus which irradiates ions to a material, an electrical discharge changes an inert gas into a plasma. Electrons are drawn from this plasma and are made into electron beams. The electron beams are passed through an active gas to create ion. When the ion is irradiated to a material, electron components of the electron beams, which are irradiated vertically to a surface of the material are changed their irradiation direction. Control of the range of electron beam irradiation is performed by a magnetic filed formed so as to surround the ion beams.
摘要:
A solar heating system including a chemical heat pump for storing thermal energy by converting same into energy in the form of a difference in the concentration of an aqueous multiple-component chemical solution which actuates the chemical heat pump, and a solar collector of a low temperature solar collection type operative to collect excess thermal energy of the sun not used for heating and cooling purposes during the time intermediate the solar irradiance abundant season and the solar irradiance scarce season, or spring and autumn, and store same in the chemical heat pump as energy in the form of a difference in the concentration of an aqueous multiple-component chemical solution. Warm water obtained by heating water by the solar heat collector is supplied in the wintertime to the chemical heat pump as a low temperature heat source and control of flow of a working medium is effected depending on the amount of the solar energy collected in the wintertime, so as to thereby increase the efficiency with which the solar energy is utilized during the intermediate season and winter.