摘要:
The present invention provides a magnesium alloy material excellent in high mechanical characteristics without using special manufacturing facilities or processes and a method for manufacturing the magnesium alloy material. The magnesium alloy material is an Mg—Zn—RE alloy containing Zn as an essential component, at least one of Gd, Tb, and Tm as RE, and the rest including Mg and unavoidable impurities and contains a needle-like precipitate or a board-like precipitate (lengthy precipitate: X-phase=β-phase, β′-phase, and β1-phase).
摘要:
Disclosed is a magnesium alloy material which can be produced without the need of employing any specialized production facility or process and has excellent mechanical properties, particularly high elongation. Also disclosed is a process for producing the magnesium alloy material. The magnesium alloy material comprises a Mg—Gd—Zn alloy comprising 1 to 5 mass % of Zn and 5 to 15 mass % of Gd as essential ingredients, with the remainder being Mg and unavoidable impurities, wherein the Mg—Gd—Zn alloy has a long period stacking structure in its alloy structure and also has Mg3Gd and/or Mg3Zn3Gd2. The process for producing the magnesium alloy material comprises a melting/casting step and a forging processing step for subjecting the casted material to a hot forging processing at a predetermined processing rate.
摘要:
The present invention provides a magnesium alloy material, having superior mechanical properties without using special production equipment or processes, and a production process thereof. The magnesium alloy material of the present invention composed of an Mg—Zn—RE alloy comprises essential components in the form of 0.5 to 3 atomic percent of Zn and 1 to 5 atomic percent of RE, with the remainder comprising Mg and unavoidable impurities. The Mg—Zn—RE alloy has a lamellar phase formed from a long period stacking ordered structure and α-Mg in the alloy structure thereof. The long period stacking ordered structure has at least one of a curved portion and a bent portion and has a divided portion in at least a portion thereof. Finely granulated α-Mg having a mean particle diameter of 2 μm or less is formed in the divided portion.
摘要:
The present invention provides a magnesium alloy material excellent in mechanical properties without using specific manufacturing facilities and processes and a method of manufacturing the same. The magnesium alloy material is an Mg—Zn—RE alloy containing, as an essential component, Zn and at least one of Gd, Tb, and Tm as RE, and of the rest including Mg and unavoidable impurities, and has stacking faults of a thickened two-atomic layer of Zn and RE in the alloy structure of the Mg—Zn—RE alloy. A method of manufacturing a magnesium alloy material involves a casting step, a solution treatment step, and a heat treatment step and the heat treatment step is carried out in a condition satisfying −14.58 [ln(x)]+532.32
摘要:
The present invention provides a magnesium alloy material excellent in high mechanical characteristics without using special manufacturing facilities or processes and a method for manufacturing the magnesium alloy material. The magnesium alloy material is an Mg—Zn—RE alloy containing Zn as an essential component, at least one of Gd, Tb, and Tm as RE, and the rest including Mg and unavoidable impurities and contains a needle-like precipitate or a board-like precipitate (lengthy precipitate: X-phase=β-phase, β′-phase, and β1-phase).
摘要:
A high strength and high toughness magnesium alloy, characterized in that it is a plastically worked product produced by a method comprising preparing a magnesium alloy cast product containing a atomic % of Zn, b atomic % of Y, a and b satisfying the following formulae (1) to (3), and the balance amount of Mg, subjecting the magnesium alloy cast product to a plastic working to form a preliminary plastically worked product, and subjecting the preliminary plastically worked product to a heat treatment, and it has a hcp structure magnesium phase and a long period stacking structure phase at an ordinary temperature; (1) 0.5≤a
摘要:
This invention provides a high-strength and high-toughness metal which has strength and toughness each high enough to be put to practical use in expanded applications of magnesium alloys, and a process for producing the same. The high-strength and high-toughness metal is a magnesium alloy comprising a crystal structure containing an hcp-structure magnesium phase and a long-period layered structure phase. At least a part of the long-period layered structure phase is in a curved or flexed state. The magnesium alloy comprises a atomic % of Zn and b atomic % of Gd with the balance consisting of Mg.
摘要:
Provided is a high-strength and high-toughness magnesium alloy which has practical level of both the strength and the toughness for expanded applications of the magnesium alloys, and is a method for manufacturing thereof. The high-strength and high-toughness magnesium alloy of the present invention contains: a atom % in total of at least one metal of Cu, Ni, and Co; and b atom % in total of at least one element selected from the group consisting of Y, Dy, Er, Ho, Gd, Tb, and Tm, while a and b satisfying the following formulae (1) to (3), 0.2≦a≦10 (1) 0.2≦b≦10 (2) 2/3a−2/3
摘要:
Provided is a high-strength and high-toughness magnesium alloy which has practical level of both the strength and the toughness for expanded applications of the magnesium alloys, and is a method for manufacturing thereof. The high-strength and high-toughness magnesium alloy of the present invention contains: a atom % in total of at least one metal of Cu, Ni, and Co; and b atom % in total of at least one element selected from the group consisting of Y, Dy, Er, Ho, Gd, Tb, and Tm, while a and b satisfying the following formulae (1) to (3), 0.2≦a≦10 (1) 0.2≦b≦10 (2) 2/3a−2/3
摘要:
Disclosed herein is a medical implant including an implant body of which at least a part is comprised of a biodegradable metal, wherein the part comprised of the biodegradable metal has a crystal grain diameter of not more than 10 μm.