Abstract:
A facility and method for analyzing and classifying calls without transcription. The facility analyzes individual frames of an audio to identify speech and measure the amount of time spent in speech for each channel (e.g., caller channel, agent channel). Additional telephony metrics such as R-factor or MOS score and other metadata may be factored in as audio analysis inputs. The facility then analyzes the frames together as a whole and formulates a clustered-frame representation of a conversation to further identify dialog patterns and characterize call classification. Based on the data in the clustered-frame representation, the facility is able to make estimations of call classification. The correlation of dialog patterns to call classification may be utilized to develop targeted solutions for call classification issues, target certain advertising channels over others, evaluate advertising placements at scale, score callers, and to identify spammers.
Abstract:
A facility and method for analyzing and classifying calls without transcription. The facility analyzes individual frames of an audio to identify speech and measure the amount of time spent in speech for each channel (e.g., caller channel, agent channel). Additional telephony metrics such as R-factor or MOS score and other metadata may be factored in as audio analysis inputs. The facility then analyzes the frames together as a whole and formulates a clustered-frame representation of a conversation to further identify dialogue patterns and characterize call classification. Based on the data in the clustered-frame representation, the facility is able to make estimations of call classification. The correlation of dialogue patterns to call classification may be utilized to develop targeted solutions for call classification issues, target certain advertising channels over others, evaluate advertising placements at scale, score callers, and to identify spammers.
Abstract:
A facility and method for analyzing and classifying calls without transcription. The facility analyzes individual frames of an audio to identify speech and measure the amount of time spent in speech for each channel (e.g., caller channel, agent channel). Additional telephony metrics such as R-factor or MOS score and other metadata may be factored in as audio analysis inputs. The facility then analyzes the frames together as a whole and formulates a clustered-frame representation of a conversation to further identify dialogue patterns and characterize call classification. Based on the data in the clustered-frame representation, the facility is able to make estimations of call classification. The correlation of dialogue patterns to call classification may be utilized to develop targeted solutions for call classification issues, target certain advertising channels over others, evaluate advertising placements at scale, score callers, and to identify spammers.
Abstract:
A facility and method for analyzing and classifying calls without transcription. The facility analyzes individual frames of an audio to identify speech and measure the amount of time spent in speech for each channel (e.g., caller channel, agent channel). Additional telephony metrics such as R-factor or MOS score and other metadata may be factored in as audio analysis inputs. The facility then analyzes the frames together as a whole and formulates a clustered-frame representation of a conversation to further identify dialog patterns and characterize call classification. Based on the data in the clustered-frame representation, the facility is able to make estimations of call classification. The correlation of dialog patterns to call classification may be utilized to develop targeted solutions for call classification issues, target certain advertising channels over others, evaluate advertising placements at scale, score callers, and to identify spammers.
Abstract:
A facility and method for analyzing and classifying calls without transcription. The facility analyzes individual frames of an audio to identify speech and measure the amount of time spent in speech for each channel (e.g., caller channel, agent channel). Additional telephony metrics such as R-factor or MOS score and other metadata may be factored in as audio analysis inputs. The facility then analyzes the frames together as a whole and formulates a clustered-frame representation of a conversation to further identify dialogue patterns and characterize call classification. Based on the data in the clustered-frame representation, the facility is able to make estimations of call classification. The correlation of dialogue patterns to call classification may be utilized to develop targeted solutions for call classification issues, target certain advertising channels over others, evaluate advertising placements at scale, score callers, and to identify spammers.
Abstract:
A facility and method for analyzing and classifying calls without transcription. The facility analyzes individual frames of an audio to identify speech and measure the amount of time spent in speech for each channel (e.g., caller channel, agent channel). Additional telephony metrics such as R-factor or MOS score and other metadata may be factored in as audio analysis inputs. The facility then analyzes the frames together as a whole and formulates a clustered-frame representation of a conversation to further identify dialogue patterns and characterize call classification. Based on the data in the clustered-frame representation, the facility is able to make estimations of call classification. The correlation of dialogue patterns to call classification may be utilized to develop targeted solutions for call classification issues, target certain advertising channels over others, evaluate advertising placements at scale, score callers, and to identify spammers.