摘要:
A method for the design and optimization of inductors for RF circuits. This method consists in the formulation of RF circuit designs as geometric programs. The designer can specify a wide variety of specifications such as gain, bandwidth, noise, etc. The method, which was implemented in simple code, determines inductor dimensions and component values in a few seconds real-time. The results was also a globally optimal design.
摘要:
A system for designing and optimizing integrated circuits. Design objectives and constraints are described as posynomial functions of the design parameters. The circuit design problem is then expressed as a special form of optimization problem called geometric programming, to which very efficient global optimization methods are applied. The present invention can thereby efficiently determine globally optimal circuit designs, or globally optimal trade-offs among competing performance measures such as, for example for an operational amplifier (op-amp), power, open-loop gain, and bandwidth. The present invention therefore yields automated synthesis of globally optimal circuit designs for a given circuit topology library, directly from specifications.
摘要:
A generalized tunable optical filter with interconnected processing devices, such as unequal arm Mach-Zehnder interferometric devices and ring resonator devices, is described. Each of the processing elements is characterized by a parametric length Δlk=nkΔlf where nk is an integer greater than 30 and Δlf is the longest length common to all of the processing elements. The optical filter is tuned by the setting of actuators in the processing elements with each setting corresponding to a predetermined filter response, such as for chromatic dispersion compensation and WDM add/drop multiplexer applications. To determine the design variables of the optical filter, such as the coupling angles θ and parametric lengths Δlk for the processing elements, a methodology of determining these variables from the desired application is also described.
摘要:
A method for rapidly determining feasibility of a force optimization problem and for rapidly solving a feasible force optimization problem is disclosed. The method comprises formulating the force optimization problem or force feasibility problem as a convex optimization problem, formulating a primal barrier subproblem associated with the convex optimization problem, and solving the primal barrier subproblem. The method and related methods may also be used to solve each problem in a set of force optimization problems, determine the minimum or maximum force required to satisfy any of a set of force optimization problems, solve a force closure problem, compute a conservative contact force vector, or solve a feasible force optimization problem with bidirectional forces.
摘要:
A method for rapidly determining feasibility of a force optimization problem and for rapidly solving a feasible force optimization problem is disclosed. The method comprises formulating the force optimization problem or force feasibility problem as a convex optimization problem, formulating a primal barrier subproblem associated with the convex optimization problem, and solving the primal barrier subproblem. The method and related methods may also be used to solve each problem in a set of force optimization problems, determine the minimum or maximum force required to satisfy any of a set of force optimization problems, solve a force closure problem, compute a conservative contact force vector, or solve a feasible force optimization problem with bidirectional forces.
摘要:
Optimization design method for configurable analog circuits and devices resulting from same. An implementation fabric for a given application domain can be accurately pre-characterized in terms of devices and parasitics. Customization structures are designed and characterized to be applied to the fabric to customize a device for a particular application. In some embodiments, characterization is accomplished by formulating a configurable design problem as an optimization with recourse problem, for example, a geometric programming with recourse (GPR) problem. Devices can be produced for multiple applications from the application domain using the same optimized fabric to provide predictable performance.
摘要:
A method for optimizing an integrated circuit uses a dominant time constant of a transition of the circuit. A physical layout of the circuit is characterized in terms of design parameters. The circuit is modeled by a conductance matrix G and a capacitance matrix C, wherein G and C are affine functions of the design parameters. The optimization method comprises the step of finding the values of the design parameters that optimize a property of the circuit while simultaneously enforcing a constraint that the dominant time constant must be less than a maximum value tmax. Mathematically, the constraint on the dominant time constant can be written: tmax G−C≧0. The optimization method can be used when the circuit has a non-tree topology. Furthermore, when the design parameters comprise variables that relate to sizes of elements of the circuit, a topology of the circuit is optimized by the optimization method. In some embodiments the circuit is optimized for a plurality of transitions, and in some embodiments the design parameters are subject to design constraints.