Abstract:
Areas in which toxic material has been released, particularly in gaseous form but also in liquid form, are decontaminated by forming gas hydrate of the toxic agent. Smaller-molecule toxic agents form sI or sII type hydrates, whereas larger-molecule toxic agents for sH type hydrates. A nullcompanion gasnull or nullcompanion agentnull is supplied to fill the smaller voids of the sH hydrate, thereby enabling larger-molecule toxic agents to form hydrates by filling the larger voids of the sH hydrate which, but for the presence of the smaller-molecule agent in the smaller voids, would be unstable and not form. Portable as well as fixed, permanently installed apparatus for conducting hydrate-based decontamination is also disclosed.
Abstract:
A condensation panel to be used for harvesting water from atmospheric moisture during those times of the diurnal cycle when relative humidity is at or near 100% utilizes very localized cooling to optimize condensation on a surface whose materials promote the condensation and collection of the water. The panel is passive in the sense that it can be deployed and left in an unmaintained condition for considerable periods of time. At least one time each day, almost certainly in the morning, water harvested by the process of assisted condensation can be collected for use.
Abstract:
Toxic waste waters polluted with high levels of chemical byproducts of various industrial processes (e.g., waste water held in industrial holding ponds) are treated using gas hydrate to extract and remove fresh water from the polluted water, thus reducing the volume of toxic waste water inventories. Extracting fresh water by forming and removing the hydrate raises the concentration of dissolved materials in the residual concentrated brines to levels at which the residual fluid is suitable for use as an industrial feedstock. Furthermore, so raising the concentration of the residual brine will cause certain mineral species to precipitate out of solution, which mineral species are separated from the fluid and may be put to other uses, as appropriate. Food products are also advantageously concentrated by means of gas hydrates.
Abstract:
An atmospheric water harvester extracts water from high relative humidity air. The temperature of the surface of a condensation member is lowered in the presence of moist air to promote condensation of water vapor on its surface, and the water so obtained by condensation is collected. The atmospheric water harvester includes a photovoltaic member that generates electricity to power the refrigeration of the condensation member. At least as much electrical power is produced as is used to condense the water vapor so that no additional sources of electrical power are required. Each atmospheric water harvester (or array of harvesters) is rapidly installed and then operated in an unattended state for considerable periods of time. Arrays of autonomous atmospheric water harvesters can be installed as free-standing units or as roofs on either new or existing buildings.
Abstract:
Methods and apparatus for desalination of salt water (and purification of polluted water) are disclosed. Salt (or otherwise polluted) water is pumped to a desalination installation and down to the base of a desalination fractionation column, where it is mixed with hydrate-forming gas to form either positively buoyant or negatively buoyant (assisted buoyancy) hydrate. The hydrate rises or is carried upward and dissociates (melts) into the gas and pure water. In preferred embodiments, residual salt water which is heated by heat given off during formation of the hydrate is removed from the system to create a bias towards overall cooling as the hydrate dissociates endothermically at shallower depths. In preferred embodiments, the input water is passed through regions of dissociation in heat-exchanging relationship therewith so as to be cooled sufficiently for hydrate to form at pressure-depth. The fresh water produced by the system is cold enough that it can be used to provide refrigeration, air conditioning, or other cooling; heat removed from the system with the heated residual water can be used for heating or other applications.
Abstract:
An apparatus is disclosed which allows the hydrate formed in the hydrate formation region of a desalination fractionation apparatus to be cooled as it rises in the apparatus. This has the beneficial effect of increasing its stability at lower pressures and reducing the depth at which the hydrate will begin to dissociate. The present invention provides for more efficient management of the distribution of thermal energy within the apparatus as a whole by controlling the flow of water through the systemnullparticularly residual fluids remaining after hydrate formsnullsuch that it is substantially downward through the fractionation column and out through a lower portion thereof. Hydrate thus separates from the residual fluid at or nearly at the point of formation, which helps keep the hydrate formation region of the apparatus at a temperature suitable for the formation of hydrate and improves efficiency. Hydrate formation may be enhanced, thereby further improving efficiency, by pre-treating the water-to-be-treated so as to dissolve hydrate-forming gas in it, before further hydrate-forming gas is injected into the water-to-be-treated under conditions conducive to the formation of gas hydrate.