摘要:
A programmable channel-swap crossbar switch for swapping signal flow from one channel to another within an Ethernet physical layer device (PHY) is presented. The crossbar switch includes two or more programmed multiplexers, each multiplexer configured to receive two or more input signals and to select which one of the input signals to pass to a programmed corresponding channel, such that a first input signal associated with a first channel can be swapped to a second channel as operating conditions necessitate. The crossbar switch can be used for Ethernet communications with various communication speeds, such as 10BaseT, 100BaseT, and Gigabit communications. A crossbar switch can be used in both a transmit path and a receive path. Two crossbar switches may be used in a receive path in order to undo channel swapping for control signal processing. A method of channel-swapping in an Ethernet PHY communications system is also presented.
摘要:
Aspects of a method and system for utilizing a 10/100/1G/10GBase-T PHY device for single channel and shared channel networks are provided. In this regard, at least one switching element may be utilized to configure an Ethernet over twisted pair PHY device for communication over a single and/or shared channel. The switching element may enable switching between a transmitter being coupled to a shared channel and a receiver being coupled to a shared channel. Additionally, the switching elements may be based on whether the transmitter is connected to a standard 10/100/1G/10GBase-T network, or to a single and/or shared channel network, for example. In this manner, the configured PHY device may remain compatible with existing Ethernet networks. The PHY device may be configured externally and/or internally. The polarity of transmitted and/or received data may be configured based on a polarity of data received from a shared channel.
摘要:
Aspects of a method and system for utilizing a 10/100/1G/10GBase-T PHY device for single channel and shared channel networks are provided. In this regard, at least one switching element may be utilized to configure an Ethernet over twisted pair PHY device for communication over a single and/or shared channel. The switching element may enable switching between a transmitter being coupled to a shared channel and a receiver being coupled to a shared channel. Additionally, the switching elements may be based on whether the transmitter is connected to a standard 10/100/1G/10GBase-T network, or to a single and/or shared channel network, for example. In this manner, the configured PHY device may remain compatible with existing Ethernet networks. The PHY device may be configured externally and/or internally. The polarity of transmitted and/or received data may be configured based on a polarity of data received from a shared channel.
摘要:
Aspects of a method and system for a power reduction scheme for Ethernet PHYs are provided. An Ethernet PHY in a link partner may disable transmission via a transmit DAC integrated during an inactive connection, 10Base-T autonegotiation operation, and/or active 10Base-T connection with no data packet transmission. The DAC may be a voltage mode or current mode DAC. The PHY or a MAC device may determine when to disable transmission via the DAC. In this regard, the PHY or the MAC device may generate appropriate signals for disabling the transmission. The DAC may be enabled for transmission by the PHY or the MAC device when a connection becomes active or when an active 10Base-T connection is ready to transmit data. Moreover, the PHY may enable transmission via the DAC when operating in a forced 10Base-T mode of operation and the connection to the link partner is active.
摘要:
Aspects of a method and system for a power reduction scheme for Ethernet PHYs are provided. An Ethernet PHY in a link partner may disable transmission via a transmit DAC integrated during an inactive connection, 10Base-T autonegotiation operation, and/or active 10Base-T connection with no data packet transmission. The DAC may be a voltage mode or current mode DAC. The PHY or a MAC device may determine when to disable transmission via the DAC. In this regard, the PHY or the MAC device may generate appropriate signals for disabling the transmission. The DAC may be enabled for transmission by the PHY or the MAC device when a connection becomes active or when an active 10Base-T connection is ready to transmit data. Moreover, the PHY may enable transmission via the DAC when operating in a forced 10Base-T mode of operation and the connection to the link partner is active.
摘要:
Aspects of a method and system for utilizing a 10/100/1 G/10 GBase-T PHY device for single channel and shared channel networks are provided. In this regard, at least one switching element may be utilized to configure an Ethernet over twisted pair PHY device for communication over a single and/or shared channel. The switching element may enable switching between a transmitter being coupled to a shared channel and a receiver being coupled to a shared channel. Additionally, the switching elements may be based on whether the transmitter is connected to a standard 10/100/1 G/10 GBase-T network, or to a single and/or shared channel network, for example. In this manner, the configured PHY device may remain compatible with existing Ethernet networks. The PHY device may be configured externally and/or internally. The polarity of transmitted and/or received data may be configured based on a polarity of data received from a shared channel.
摘要翻译:提供了一种用于单通道和共享信道网络使用10/100/1 G / 10 GBase-T PHY设备的方法和系统。 在这方面,可以使用至少一个开关元件来配置用于通过单个和/或共享信道进行通信的双绞线以太网PHY设备。 开关元件可以实现耦合到共享信道的发射机与耦合到共享信道的接收机之间的切换。 此外,开关元件可以基于发射机是否连接到例如标准10/100/1 G / 10 GBase-T网络,或者连接到单个和/或共享信道网络。 以这种方式,配置的PHY设备可以保持与现有以太网的兼容。 PHY设备可以在外部和/或内部配置。 可以基于从共享信道接收的数据的极性来配置发送和/或接收数据的极性。
摘要:
Aspects of a method and system for utilizing a 10/100/1G/10GBase-T PHY device for single channel and shared channel networks are provided. In this regard, at least one switching element may be utilized to configure an Ethernet over twisted pair PHY device for communication over a single and/or shared channel. The switching element may enable switching between a transmitter being coupled to a shared channel and a receiver being coupled to a shared channel. Additionally, the switching elements may be based on whether the transmitter is connected to a standard 10/100/1G/10GBase-T network, or to a single and/or shared channel network, for example. In this manner, the configured PHY device may remain compatible with existing Ethernet networks. The PHY device may be configured externally and/or internally. The polarity of transmitted and/or received data may be configured based on a polarity of data received from a shared channel.
摘要:
Aspects of a method and system for a power reduction scheme for Ethernet PHYs are provided. An Ethernet PHY in a link partner may disable transmission via a transmit DAC integrated during an inactive connection, 10Base-T autonegotiation operation, and/or active 10Base-T connection with no data packet transmission. The DAC may be a voltage mode or current mode DAC. The PHY or a MAC device may determine when to disable transmission via the DAC. In this regard, the PHY or the MAC device may generate appropriate signals for disabling the transmission. The DAC may be enabled for transmission by the PHY or the MAC device when a connection becomes active or when an active 10Base-T connection is ready to transmit data. Moreover, the PHY may enable transmission via the DAC when operating in a forced 10Base-T mode of operation and the connection to the link partner is active.
摘要:
A programmable channel-swap crossbar switch for swapping signal flow from one channel to another within an Ethernet physical layer device (PHY) is presented. The crossbar switch includes two or more programmed multiplexers, each multiplexer configured to receive two or more input signals and to select which one of the input signals to pass to a programmed corresponding channel, such that a first input signal associated with a first channel can be swapped to a second channel as operating conditions necessitate. The crossbar switch can be used for Ethernet communications with various communication speeds, such as 10BaseT, 100BaseT, and Gigabit communications. A crossbar switch can be used in both a transmit path and a receive path. Two crossbar switches may be used in a receive path in order to undo channel swapping for control signal processing. A method of channel-swapping in an Ethernet PHY communications system is also presented.
摘要:
A method and apparatus for regulating transceiver power consumption for a transceiver in a communications network. Data received by the transceiver is monitored to detect the presence or absence of a received data signal. A transceiver state machine is controlled to regulate transceiver power consumption in response to the presence of absence of the data received.