摘要:
A proximity sensor measures receptor output with an energy source deactivated. The sensor then measures receptor output with the energy source activated. The measurements with the energy source activated are compared to the measurements with the energy source deactivated to compensate for the effect of ambient conditions. A near condition is recognized if the change between the two groups of measurements exceeds a designated value. To compensate for receptor output that may decrease after reaching a peak value during approach of an object, a near condition can be maintained until the change between the two groups of measurements no longer exceeds a different designated value. Multiple sensors can be used to avoid false near conditions caused by, e.g., placing a device equipped with the sensors next to a stationary object. In one embodiment, a sensor comprises an infrared light emitting diode and a phototransistor.
摘要:
A proximity sensor measures receptor output with an energy source deactivated. The sensor then measures receptor output with the energy source activated. The measurements with the energy source activated are compared to the measurements with the energy source deactivated to compensate for the effect of ambient conditions. A near condition is recognized if the change between the two groups of measurements exceeds a designated value. To compensate for receptor output that may decrease after reaching a peak value during approach of an object, a near condition can be maintained until the change between the two groups of measurements no longer exceeds a different designated value. Multiple sensors can be used to avoid false near conditions caused by, e.g., placing a device equipped with the sensors next to a stationary object. In one embodiment, a sensor comprises an infrared light emitting diode and a phototransistor.
摘要:
A computer input device controller dynamically adjusts the rate at which an illumination source is activated, and may also adjust the rate at which other optical tracking system components are activated. As the velocity of optical tracking system movement relative to a tracked surface increases, the controller increases the activation rate(s). As the velocity of relative movement decreases, the controller decreases the activation rate(s). Future displacements of a tracking system relative to a tracked surface are also estimated. In particular, relative tracking system/tracked surface velocity is calculated based on a series of images. Relative displacement is then estimated based on the calculated velocity.
摘要:
A peripheral device is connectable to a computer having one of a first interface and a second interface. The first interface communicates with the peripheral device over a differential data connection having a first data conductor and a second data conductor. The second interface communicates with the peripheral device over a clock conductor and a single ended data connection which includes a data conductor. The peripheral device has first and second communication conductors configured for connection to the first and second data conductors in the differential data connection when the computer includes the first interface and is configured for connection to the first data conductor in the single ended data connection and the clock conductor when the computer is provided with the second interface. The peripheral device includes an interface detection component coupled to the first and second communication conductors and configured to detect which of the first and second interfaces the peripheral device is connected to. The peripheral device also includes a controller component configured to communicate between the peripheral device according to a protocol corresponding to the detected interface.
摘要:
Capacitive proximity sensing is carried out by detecting a relative change in the capacitance of a “scoop” capacitor formed by a conductor and a surrounding ground plane. Charge is transferred between the “scoop” capacitor and a relatively large “bucket” capacitor, and a voltage of the bucket capacitor is applied to an input threshold switch. A state transition (e.g., from low to high, or high to low) of the input threshold switch is detected and a value (TouchVal) indicative of a number of cycles of charge transfer required to reach the state transition is determined. The presence or absence of an object or body portion in close proximity to or contact with a device can be determined by comparing TouchVal with a predetermined threshold value (TouchOff). In order to lessen the time required for detection, and/or improve the sensitivity thereof, the bucket capacitor may initially be charged to a repeatable non-zero reference level closer to the charge level that will cause a state transition. TouchOff can be adjusted to take into account environmentally induced (non-touch related) changes in the capacitance of the scoop capacitor. Power management may be provided in a user operated data input device utilizing the inventive proximity sensing.
摘要:
A touch screen assembly including a molded cover and base is described. A mounting board is sandwiched between the cover and the base and supports a plurality of LEDs and detectors. Cylindrical guides corresponding to each of the LEDs and detectors are formed in the base when the base and cover are attached. The guides at the LEDs limit beam spreading and guides at the detectors prevent off-axis light from being detected. Support pedestals formed in the base, together with the cylindrical guides help align and support the LEDs and detectors to prevent misalignment and problems associated with fatigue. The cover is attached to the base by catch hooks which may be reached without disassembly of the CRT. Access to the mounting board is thereby facilitated.
摘要:
Capacitive proximity sensing is carried out by detecting a relative change in the capacitance of a “scoop” capacitor formed by a conductor and a surrounding ground plane. The conductor may be a plate provided in the form of an adhesive label printed with conductive ink. Charge is transferred between the “scoop” capacitor and a relatively large “bucket” capacitor, and a voltage of the bucket capacitor is applied to an input threshold switch. A state transition (e.g., from low to high, or high to low) of the input threshold switch is detected and a value (TouchVal) indicative of a number of cycles of charge transfer required to reach the state transition is determined. The presence or absence of an object or body portion in close proximity to or contact with a device can be determined by comparing TouchVal with a predetermined threshold value (TouchOff). TouchOff can be adjusted to take into account environmentally induced (non-touch related) changes in the capacitance of the scoop capacitor. Power management is provided in a user operated data input device utilizing proximity sensing and switching between three or more power states. Switching between the power states occurs based upon the presence or absence of input activity, and an operation instrumentality (e.g., a hand) in close proximity to or contact with the device. In an optical surface tracking cursor control device embodiment, switching to and from a BEACON state, which provides a reduced flash rate of a surface illuminating light source, is carried out based upon a detected presence or absence of a trackable surface.
摘要:
Power management is provided in a user operated data input device utilizing proximity sensing and switching between three or more power states. Switching between the power states occurs based upon the presence or absence of input activity, and an operation instrumentality (e.g., a hand) in close proximity to or contact with the device. Capacitive proximity sensing is carried out be detecting a relative change in the capacitance of a “scoop” capacitor formed by a conductor and a surrounding ground plane. In an optical surface tracking cursor control device embodiment, switching to and from a BEACON state, which provides a reduced flash rate of a surface illuminating light source, is carried out based upon a detected presence or absence of a trackable surface.
摘要:
A peripheral device is connectable to a computer having one of a first interface and a second interface. The first interface communicates with the peripheral device over a differential data connection having a first data conductor and a second data conductor. The second interface communicates with the peripheral device over a clock conductor and a single ended data connection which includes a data conductor. The peripheral device has first and second communication conductors configured for connection to the first and second data conductors in the differential data connection when the computer includes the first interface and is configured for connection to the first data conductor in the single ended data connection and the clock conductor when the computer is provided with the second interface. The peripheral device includes an interface detection component coupled to the first and second communication conductors and configured to detect which of the first and second interfaces the peripheral device is connected to. The peripheral device also includes a controller component configured to communicate between the peripheral device according to a protocol corresponding to the detected interface.