Abstract:
A switching power converter for conversion of power between a source and a load includes a power switch, a free running oscillator for producing a drive signal to cycle the power switch ON and OFF, wherein the power switch, when coupled to the source and cycled ON and OFF, defines a pulse of power at the load, and a controller which regulates an output voltage at the load by varying the number of pulses of power occurring at the load over time.
Abstract:
A power converter control system is provided which combines a pulse train regulation control technique with a pulse train optimization technique, to control the output level of the power converter, while maintaining optimal performance for other power converter parameters. The power converter control system describe herein provides versatility not previously available in power converter control systems by providing features such as quasi-resonant mode control, discontinuous mode control, and/or power factor correction. A pulse optimizer adjusts or customizes, for example, the ON time, duty cycle or frequency of pulse train pulses output by a pulse generator. The adjusted pulses are gated by a pulse rate controller to selectively actuate a power switch, thereby regulating the output power level and optimize the overall performance of the power converter.
Abstract:
An AC to DC power converter, comprising an input, an output, a plurality of pass elements connected in parallel between the input and output, and a controller for switching ON a subset of the plurality of pass elements. The controller sets an ON time for at least one pass element in the subset based on a load at the output and a phase angle of an input voltage at the input. The input voltage may comprise a single or multi-phase signal. The number of pass elements in the subset is based on the load. In one embodiment, each pass element comprising a pair of series-connected field effect transistors coupled source to source and operated in fully enhanced mode.
Abstract:
A method of regulating voltage at an output of a switching power converter, the converter comprising a switch and pulse generation circuitry, the pulse generation circuitry producing one or more drive signals for cycling the switch ON and OFF, wherein if the switch is cycled ON and OFF according to a cycle of a drive signal, power is transferred from a source to a load. The method includes sensing an output voltage feedback signal, comparing the sensed feedback signal to a reference at a determined time during a cycling of the switch, and regulating an output voltage at the load by controlling whether a cycle of one of the drive signals cycles the switch in response to the comparison.
Abstract:
Various three, four and five terminal power supply control packages for controlling delivery of power from a source to a load in both single and dual switch transformer coupled power converters are disclosed. By way of example, a three-terminal control package has a first terminal for coupling to a primary winding of a transformer, a second terminal for coupling to a ground reference and a third terminal for coupling to a source of operating power. An internal power switch has an input coupled to the first terminal, an output coupled to the second terminal, and an activation gate. The package includes pulse train control circuitry coupled to the power switch activation gate and responsive to an error signal for driving the power switch, the error signal derived from an internally generated compensation signal corresponding to an expected voltage loss between the source and the load.
Abstract:
A power converter for delivering power from a source to a load includes a switch, pulse generation circuitry producing one or more drive signals for cycling the switch ON and OFF, wherein if the switch is cycled ON and OFF according to a cycle of a drive signal, power is transferred from the source to the load, a comparator for comparing a feedback signal approximating an output voltage at the load to a reference, and a controller coupled to the pulse generation circuitry for controlling which, if any, cycle of a drive signal cycles the switch in response to an output of the comparator.
Abstract:
A power converter delivers electrical power from an electrical power source to a load according to a plurality of operation modes, where at least one of the operation modes is a peak current switching mode. Under the peak current switching mode, a switch controller controls the switch in the power converter to be kept on until the current through the switch reaches a peak current value corresponding to a given phase of the input voltage signal to the power converter. The peak current values have a reference shape, which may be a trapezoidal. The power converter may have any topology, such as a flyback-type power converter or a boost-type power converter.
Abstract:
A method for estimating the location of a mobile Wi-Fi signal receiver from a database of independently obtained survey data, each survey datum consisting of a surface of location derived from a composite GPS signal, together with a Wi-Fi signature measured concurrently with the GPS signal measurement, is disclosed. The method comprises receiving a Wi-Fi signature, measured and recorded by said mobile. Wi-Fi signal receiver, at the location to be estimated; extracting from the database, an algorithmically-determined subset of surfaces of location, utilizing the Wi-Fi signature recorded by said mobile Wi-Fi signal receiver, and estimating the location of said mobile Wi-Fi signal receiver from said algorithmically-determined subset of surfaces of location. In one embodiment, the algorithmically-determined subset consists of those surfaces of location with Wi-Fi signatures identical to the mobile Wi-Fi signature; and the estimate of the location of said mobile Wi-Fi signal receiver is determined as the point for which the sum of the squares of the distances to each of the surfaces of location included in said algorithmically-determined subset is minimized.
Abstract:
A method for estimating the location of a beacon from an ensemble of measurements associated with said beacon, where, contained in each measurement, are GPS data from which surfaces of location may be extracted, together with the ID's of beacons detectable at the point of measurement, is disclosed. The method comprises extracting the canonical set of surfaces of location implicit in each of the associated measurements, and determining the estimate of the location of the beacon as the point for which the sum of the squares of the distances to each of the surfaces so extracted is minimized. A system for the compilation of a database of beacon locations from measurements containing a time-stamped recording of the composite GPS signal (which recording is referred to as a datagram), together with the ID's and associated signal strengths of beacons detectable at the point of measurement, is also disclosed. The system comprises GPS signal processing means for extracting, from each time-stamped datagram, the canonic set of surfaces of location, and beacon location estimation means for estimating the location of a beacon from an ensemble of surfaces of location associated with said beacon.
Abstract:
This disclosure relates to wireless battery charging of electronic devices such as wireless headsets/headphones. In one embodiment, an electronic device is provided comprising a speaker comprising a coil, and the coil is operative both to cause the speaker to produce sound and to receive energy transferred to the coil via inductive coupling. The received energy is used to recharge a rechargeable battery in the electronic device. In other embodiments, the coil used to receive the energy that recharges the battery is received by a coil other than the coil in the speaker.