摘要:
Amplifier for an ultra-wideband (UWB) signal receiver having a signal input (15) for receiving an ultra-wideband signal which is sent by a transmitter (1) and which is transmitted in a sequence of transmission channels (Ki) (which each have a particular frequency bandwidth) which has been agreed between the transmitter (1) and the receiver (4); a transistor (18) whose control connection is connected to the signal input (15); a resonant circuit (26, 30, 31) which is connected to the transistor (18) and whose resonant frequency can be set for the purpose of selecting the transmission channel (Ki) in line with the agreed sequence of transmission channels; and having a signal output (29) for outputting the amplified ultra-wideband signal, the signal output being tapped off between the transistor (18) and the resonant circuit.
摘要:
Amplifier for an ultra-wideband (UWB) signal receiver having a signal input (15) for receiving an ultra-wideband signal which is sent by a transmitter (1) and which is transmitted in a sequence of transmission channels (K.sub.i) (which each have a particular frequency bandwidth) which has been agreed between the transmitter (1) and the receiver (4); a transistor (18) whose control connection is connected to the signal input (15); a resonant circuit (26, 30, 31) which is connected to the transistor (18) and whose resonant frequency can be set for the purpose of selecting the transmission channel (K.sub.i) in line with the agreed sequence of transmission channels; and having a signal output (29) for outputting the amplified ultra-wideband signal, the signal output being tapped off between the transistor (18) and the resonant circuit.
摘要:
Circuit arrangement for a wideband mixer (1, 101, 201) with a multiplicative mixing stage (2) which exhibits a carrier frequency input (3, 4) for coupling in a differential carrier frequency signal (LOP, LON), a mixing stage input (5, 6) for coupling in a predistorted differential input signal (LFPD, LFND), and an output (9, 10) for coupling out a differential output signal (OUTP, OUTN) which is generated from the differential carrier frequency signal (LOP, LON) and the predistorted differential input signal (LFPD, LFND) by multiplicative mixing, the predistorted differential input signal (LFPD, LFND) being generated from a differential input signal (LFP, LFN) by means of a quadratic predistortion and a linear predistortion.
摘要:
Circuit arrangement for a wideband mixer (1, 101, 201) with a multiplicative mixing stage (2) which exhibits a carrier frequency input (3, 4) for coupling in a differential carrier frequency signal (LOP, LON), a mixing stage input (5, 6) for coupling in a predistorted differential input signal (LFPD, LFND), and an output (9, 10) for coupling out a differential output signal (OUTP, OUTN) which is generated from the differential carrier frequency signal (LOP, LON) and the predistorted differential input signal (LFPD, LFND) by multiplicative mixing, the predistorted differential input signal (LFPD, LFND) being generated from a differential input signal (LFP, LFN) by means of a quadratic predistortion and a linear predistortion.
摘要:
A method and an arrangement for processing a received signal which comprises phase-shift modulated or amplitude-quadrature modulated part-signals which are transmitted in a plurality of different frequency bands, wherein the received signal is processed in a plurality of stages in succession, by multiplying all the input signals to each of the stages by two mutually orthogonal signals in each case to form two intermediate signals in each case, wherein the intermediate signals from one stage in each case act as the input signals to whichever is the succeeding stage in the particular case and the received signal acts as the input signal to the first stage, and wherein an in-phase and/or an quadrature component of the individual part-signals in the different frequency bands are determined from the intermediate signals from the last stage. Parallel, simultaneous reception of a plurality of frequency bands can be implemented relatively easily in this way.
摘要:
Frequency pattern generator (1, 101, 201) for generating frequency pulses, said generator having a first local oscillator unit (2-1, 121, 221) for generating a first radio frequency carrier frequency signal (LO1), at least one second local oscillator unit (2-2, . . . 2-N, 122, 222) for generating at least one second radio frequency carrier frequency signal (LO2), a switching device (3, 103, 203) for passing on one of the radio frequency carrier frequency signals (LO1, LO2) or a zero signal (DC) in a manner dependent on a control signal (CTR), and a mixing stage (9, 109, 209, 212, 309) for mixing the signal (LO) that has been passed on by the switching device (3, 103, 203) with a mixing frequency signal (LF) to form a pulsed output signal (RFOUT), the pulsed output signal (RFOUT) having frequency pulses at a respective frequency (f1, . . . f8) and length (Tp) in a manner dependent on the control signal (CTR).
摘要:
Amplifier for an ultra-wideband (UWB) signal receiver having a signal input (15) for receiving an ultra-wideband signal which is sent by a transmitter (1) and which is transmitted in a sequence of transmission channels (Ki) (which each have a particular frequency bandwidth) which has been agreed between the transmitter (1) and the receiver (4); a transistor (18) whose control connection is connected to the signal input (15); a resonant circuit (26, 30, 31) which is connected to the transistor (18) and whose resonant frequency can be set for the purpose of selecting the transmission channel (Ki) in line with the agreed sequence of transmission channels; and having a signal output (29) for outputting the amplified ultra-wideband signal, the signal output being tapped off between the transistor (18) and the resonant circuit.
摘要:
A traveling wave amplifier comprises a first normally off MOS transistor having a drain, source and gate terminal. The drain terminal is connected to a node of a drain line, which is connected to a first supply voltage potential via a connecting resistor. The gate terminal is connected to a node of a gate line, onto which an input signal is coupled. The source terminal is coupled to a second supply voltage potential via a first resistor. The traveling wave amplifier also comprises at least one second normally off MOS transistor. In addition, the traveling wave amplifier further comprises a normally off bias MOS transistor. The normally off bias MOS transistor forms a current mirror with at least one of the second normally off MOS transistors. An output signal of the traveling wave amplifier is tapped off on the drain line.
摘要:
Amplifier for an ultra-wideband (UWB) signal receiver having a signal input (15) for receiving an ultra-wideband signal which is sent by a transmitter (1) and which is transmitted in a sequence of transmission channels (K.sub.i) (which each have a particular frequency bandwidth) which has been agreed between the transmitter (1) and the receiver (4); a transistor (18) whose control connection is connected to the signal input (15); a resonant circuit (26, 30, 31) which is connected to the transistor (18) and whose resonant frequency can be set for the purpose of selecting the transmission channel (K.sub.i) in line with the agreed sequence of transmission channels; and having a signal output (29) for outputting the amplified ultra-wideband signal, the signal output being tapped off between the transistor (18) and the resonant circuit.
摘要:
Frequency pattern generator (1, 101, 201) for generating frequency pulses, said generator having a first local oscillator unit (2-1, 121, 221) for generating a first radio frequency carrier frequency signal (LO1), at least one second local oscillator unit (2-2, . . . 2-N, 122, 222) for generating at least one second radio frequency carrier frequency signal (LO2), a switching device (3, 103, 203) for passing on one of the radio frequency carrier frequency signals (LO1, LO2) or a zero signal (DC) in a manner dependent on a control signal (CTR), and a mixing stage (9, 109, 209, 212, 309) for mixing the signal (LO) that has been passed on by the switching device (3, 103, 203) with a mixing frequency signal (LF) to form a pulsed output signal (RFOUT), the pulsed output signal (RFOUT) having frequency pulses at a respective frequency (f1, . . . f8) and length (Tp) in a manner dependent on the control signal (CTR).