摘要:
One embodiment of the present invention relates to a transistor that is at least partially formed in a semiconductor substrate having a surface. In particular, the transistor includes a first source/drain region, a second source/drain region, a channel region connecting said first and second source/drain regions. Said channel region is disposed in said semiconductor substrate. A channel direction is defined by a line connecting said first and said second source/drain regions. A gate groove is formed in said semiconductor substrate. Said gate groove is formed adjacent to said channel region. Said gate groove includes an upper portion and a lower portion, said upper portion being adjacent to said lower portion, and a gate dielectric layer disposed between said channel region and said gate groove. The lower portion of said gate groove is filled with polysilicon whereas the upper portion of said gate groove is filled with a metal or a metal compound thereby forming a gate electrode disposed along said channel region. Said gate electrode controls an electrical current flowing between said first and second source/drain regions.
摘要:
One embodiment of the present invention relates to a transistor that is at least partially formed in a semiconductor substrate having a surface. In particular, the transistor includes a first source/drain region, a second source/drain region, a channel region connecting said first and second source/drain regions. Said channel region is disposed in said semiconductor substrate. A channel direction is defined by a line connecting said first and said second source/drain regions. A gate groove is formed in said semiconductor substrate. Said gate groove is formed adjacent to said channel region. Said gate groove includes an upper portion and a lower portion, said upper portion being adjacent to said lower portion, and a gate dielectric layer disposed between said channel region and said gate groove. The lower portion of said gate groove is filled with polysilicon whereas the upper portion of said gate groove is filled with a metal or a metal compound thereby forming a gate electrode disposed along said channel region. Said gate electrode controls an electrical current flowing between said first and second source/drain regions.
摘要:
The invention relates to a method of manufacturing a semiconductor device, in which a substrate is provided, a dielectric layer is formed on top of the substrate, an amorphous semiconductor layer id deposited on top of the dielectric layer, the amorphous semiconductor layer is doped, and a high temperature step to the amorphous layer is applied to form a crystallized layer out of the amorphous semiconductor.
摘要:
In a semiconductor device, through hole vias or through silicon vias (TSV) may be formed so as to include an efficient stress relaxation mechanism, for instance provided on the basis of a stress relaxation layer, in order to reduce or compensate for stress forces caused by a pronounced change in volume of the conductive fill materials of the through hole vias. In this manner, the high risk of creating cracks and delamination events in conventional semiconductor devices may be significantly reduced.
摘要:
A process for fabricating an interconnect for contact holes includes forming contact holes in an insulation layer leading to a first interconnect layer, cleaning the hole surface, forming a barrier layer on the hole surface, forming an AlGeCu-containing second interconnect layer on the insulation surface by a low-temperature PVD process to fill up the contact holes, forming and patterning a mask layer, and patterning the second interconnect layer by an anisotropic etching process using the mask layer. Due to the relatively small grain sizes and precipitations that are formed in the process, the layer can be patterned directly in a subsequent patterning step, resulting in an extremely reliable and inexpensive interconnect that is easy to integrate in existing process sequences.
摘要:
In a semiconductor device, through hole vias or through silicon vias (TSV) may be formed so as to include an efficient stress relaxation mechanism, for instance provided on the basis of a stress relaxation layer, in order to reduce or compensate for stress forces caused by a pronounced change in volume of the conductive fill materials of the through hole vias. In this manner, the high risk of creating cracks and delamination events in conventional semiconductor devices may be significantly reduced.
摘要:
The present invention provides a fabrication method for an integrated circuit structure comprising the steps of forming a electrode layer stack (5, 6′, 7′, 8′) by sequentially depositing a polysilicon layer (5) on a gate dielectric layer (9); a contact layer (6′) composed of Ti on the polysilicon layer (5); a barrier layer (7′) composed of WN on the contact layer (6′); and a metal layer (8′) composed of W on the barrier layer (7′); wherein steps iii) and iv) are carried out as PVD steps using krypton and/or xenon as sputtering gas; and annealing the layer stack (5, 6′, 7′, 8′) in a thermal step in the temperature range of between 600 and 950° C.
摘要:
The present invention provides a manufacturing method for an integrated semiconductor contact structure having an improved Aluminum fill comprising the steps of: forming contact holes in an insulation layer provided on a wafer, said contact holes having a respective bottom and respective sidewalls, said bottoms including a respective conductive area; introducing said wafer into a first PVD deposition chamber, said first PVD deposition chamber including a wafer bias means; and cold depositing a first Aluminum layer on the wafer in said first PVD deposition chamber, said first Aluminum layer covering said bottoms and said sidewalls of said contact holes and forming a seed layer; wherein during said step of cold depositing said first Aluminum layer on the wafer in said first PVD deposition chamber said wafer bias means is set to a bias in the range between 20 W and 700 W or −50 V to −800 V.
摘要:
Disclosed herein are various methods of forming conductive structures, such as conductive lines and vias, using a dual metal hard mask integration technique. In one example, the method includes forming a first layer of insulating material, forming a first patterned metal hard mask layer above the first layer of insulating material, forming a second patterned metal hard mask layer above the first patterned metal hard mask layer, performing at least one etching process through both of the second patterned metal hard mask layer and the first patterned metal hard mask layer to define a trench in the first layer of insulating material and forming a conductive structure in the trench.
摘要:
Disclosed herein are various methods of forming conductive structures, such as conductive lines and vias, using a dual metal hard mask integration technique. In one example, the method includes forming a first layer of insulating material, forming a first patterned metal hard mask layer above the first layer of insulating material, forming a second patterned metal hard mask layer above the first patterned metal hard mask layer, performing at least one etching process through both of the second patterned metal hard mask layer and the first patterned metal hard mask layer to define a trench in the first layer of insulating material and forming a conductive structure in the trench.